Skip to main content
Log in

On the Boundedness of Effective Potentials Arising from String Compactifications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study effective potentials coming from compactifications of string theory. We show that, under mild assumptions, such potentials are bounded from below in four dimensions, giving an affirmative answer to a conjecture proposed by the second author in Douglas (JHEP 3:71, 2010). We also derive some sufficient conditions for the existence of critical points. All proofs and mathematical hypotheses are discussed in the context of their relevance to the physics of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharony O. et al.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Anderson M.: On long-time evolution in general relativity and geometrization of 3-manifolds. Commun. Math. Phys 222, 533–567 (2001)

    Article  ADS  MATH  Google Scholar 

  3. Aubin T.: Équations différentielles non-linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Berlin-Heidelberg-New York: Springer, 1998

  5. Aubin T.: Métriques riemanniennes et courbure. J. Diff. Geom. 4, 383–424 (1970)

    MATH  MathSciNet  Google Scholar 

  6. Bando S., Urakawa H.: Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds. Tohoku Math. J. 35, 155–172 (1983)

    Article  MathSciNet  Google Scholar 

  7. Becker K., Becker M.: M-Theory on Eight-Manifolds. Nucl. Phys. B 477, 155 (1996)

    Article  ADS  MATH  Google Scholar 

  8. Candelas P., Horowitz G., Strominger A., Witten E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, Y.-Z., Wu, L.C.: Second Order Elliptic Equations and Elliptic Systems. Trans. Math. Monographs, Vol. 174. Providence, RI: Amer. Math. Soc., 2004

  10. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence, RI: Amer. Math. Soc., 2008

  11. Chruściel P., Herzlich M.: The mass of asymptotically hyperbolic Riemannian manifolds. Paci. J. Math. 212(2), 231–264 (2003)

    Article  Google Scholar 

  12. Disconzi, M., Khuri, M.: Compactness and non-compactness for Yamabe problem on manifolds with boundary. J. Reine Angew. Math. http://arxiv.org/abs/1201.4559v2 [math.DG] (2012, to appear)

  13. Douglas M.R., Kachru S.: Flux compactification. Rev. Mod. Phys. 79, 733 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Douglas M.R.: Effective potential and warp factor dynamics. JHEP 3, 71 (2010)

    Article  ADS  Google Scholar 

  15. Douglas M.R., Kallosh R.: Compactification on negatively curved manifolds. JHEP 1006, 004 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Providence, RI: Amer. Math. Soc., 2002

  17. Giddings S., Kachru S., Polchinski J.: Hierarchies from Fluxes in String Compactifications. Phys. Rev. D 66, 106006 (2002)

    ADS  MathSciNet  Google Scholar 

  18. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, Vols. 1 & 2. Cambridge Monographs in Mathematical Physics. Cambridge: Cambridge University Press, 1988

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations. Classics in Mathematics. Berlin-Heidelberg-New York: Springer, 1998

  20. Hertog T., Horowitz G.T., Maeda K.: Negative energy density in Calabi-Yau compactifications. JHEP 0305, 060 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kachru S., Kallosh R., Linde A.D., Trivedi S.P.: De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kazdan, J.: Applications of Partial Differential Equations to Problems in Geometry. http://hans.math.upenn.edu/~kazdan/, 1993

  23. Khuri M.A., Marques F.C., Schoen R.M.: A compactness theorem for the Yamabe problem. J. Diff. Geom. 81(1), 143–196 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Ladyzhenskaya, O., Ural’tseva, N.: Linear and Quasilinear Elliptic equations. Mathematics in Science and Engineering, Vol. 46. San Diego, CA: Academic Press, 1968

  25. Lebrun, C.: Einstein metrics and the Yamabe problem. Trends in mathematical physics, Amer. Math. Soc., Providence, RI: RI, 1999, pp. 353–376

  26. Lee J.M., Parker T.H.: The Yamabe problem. Bull. (New Series) Am. Math. Soc. 17(1), 37–91 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer, 1980

  28. Kleinerman S., Rodnianski I.: On the breakdown criterion in General Relativity. J. Am. Math. Soc. 23, 345–382 (2010)

    Article  Google Scholar 

  29. Maldacena J.M., Nunez C.: Supergravity description of field theories on curved manifolds and a no go theorem. Int. J. Mod. Phys. A 16, 822 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Mars M.: Present status of the Penrose inequality. Class. Quant. Grav. 26, 193001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Polchinski, J.: String Theory, Vols. 1 & 2. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, 1999

  32. Pollack D.: Nonuniqueness and high energy solutions for a conformally invariant scalar curvature equation. Comm. Anal. Geom. 1, 347–414 (1993)

    MATH  MathSciNet  Google Scholar 

  33. Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Cambridge: Cambridge University Press, 1997

  34. Rudin, W.: Real and Complex Analysis, 3rd edn. New York: McGraw-Hill, 1987

  35. Sattinger D.: Monotonic methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21(11), 979–1000 (1973)

    Article  MathSciNet  Google Scholar 

  36. Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)

    MATH  MathSciNet  Google Scholar 

  37. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: ‘Topics in Calculus of Variations’, Lecture Notes in Mathematics, Vol. 1365. New York: Springer-Verlag, 1989

  38. Schoen, R.: On the number of constant scalar curvature metrics in a conformal class, In: Lawson, H.B., Teneblat, K. (eds.) ‘Differential Geometry: A symposium in honor of Manfredo do Carmo’. New York: Wiley, 1991, pp. 311–320

  39. Schoen, R.: Courses at Standford University, 1989 (These are notes written by D. Pollack from a Topics Course at Stanford in 1988, which are unpublished, but have been widely distributed)

  40. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry In: Conference Proceedings and Lecture Notes in Geometry and Topology, Vol. I. Somerville MA: International Press, 1994

  41. Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Schoen R., Yau S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Trudinger N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22(3), 165–274 (1968)

    Google Scholar 

  44. Trudinger N.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27(2), 265–308 (1973)

    MATH  MathSciNet  Google Scholar 

  45. Trudinger N.: Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients. Math. Zeit. 156, 291–301 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wald, R.M.: General Relativity. Chicago: University of Chicago Press, 1984

  47. Wang X.: The mass of asymptotically hyperbolic manifolds. J. Diff. Geom. 57(2), 273–299 (2001)

    MATH  Google Scholar 

  48. Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MATH  MathSciNet  Google Scholar 

  50. de Wit B., Smit D.J., Hari Dass N.D.: Residual supersymmetry of compactified D = 10 supergravity. Nucl. Phys. B. 283, 165 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Douglas.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Disconzi, M.M., Douglas, M.R. & Pingali, V. On the Boundedness of Effective Potentials Arising from String Compactifications. Commun. Math. Phys. 325, 847–878 (2014). https://doi.org/10.1007/s00220-013-1866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1866-z

Keywords

Navigation