Skip to main content
Log in

Almost Commuting Unitary Matrices Related to Time Reversal

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The behavior of fermionic systems depends on the geometry of the system and the symmetry class of the Hamiltonian and observables. Almost commuting matrices arise from band-projected position observables in such systems. One expects the mathematical behavior of almost commuting Hermitian matrices to depend on two factors. One factor will be the approximate polynomial relations satisfied by the matrices. The other factor is what algebra the matrices are in, either \({{\bf M}_n(\mathbb{A})}\) for \({\mathbb{A} = \mathbb{R}}\) , \({\mathbb{A} = \mathbb{C}}\) or \({\mathbb{A} = \mathbb{H}}\) , the algebra of quaternions.

There are potential obstructions keeping k-tuples of almost commuting operators from being close to a commuting k-tuple.We consider two-dimensional geometries and so this obstruction lives in \({KO_{-2}(\mathbb{A})}\) . This obstruction corresponds to either the Chern number or spin Chern number in physics. We show that if this obstruction is the trivial element in K-theory then the approximation by commuting matrices is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Cardoso J., Souloumiac A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eilers S., Loring T.A.: Computing contingencies for stable relations. Int. J. Math. 10(3), 301–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eilers S., Loring T.A., Pedersen G.K.: Morphisms of extensions of C*-algebras: pushing forward the Busby invariant. Adv. Math. 147(1), 74–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farenick D.R., Pidkowich B.A.F.: The spectral theorem in quaternions. Lin. Alg. Appl. 371, 75–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Freedman M., Hastings M., Nayak C., Qi X., Walker K., Wang Z.: Projective ribbon permutation statistics: A remnant of non-abelian braiding in higher dimensions. Phy. Rev. B 83(11), 115,132 (2011)

    Article  Google Scholar 

  7. Giordano T.: A classification of approximately finite real C*-algebras. J. Reine Angew. Math. 385, 161–194 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Gygi F., Fattebert J., Schwegler E.: Computation of maximally localized Wannier functions using a simultaneous diagonalization algorithm. Comp. Phys. Commun. 155(1), 1–6 (2003)

    Article  ADS  Google Scholar 

  9. Hastings, M.B.: Topology and phases in fermionic systems. J. Stat. Mech. 2008, L01001 (2008)

  10. Hastings M.B., Loring T.A.: Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys. 51(1), 015214 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. Hastings M.B., Loring T.A.: Topological insulators and C*-algebras: Theory and numerical practice. Ann. Phys. 326(7), 1699–1759 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Kitaev, A.: Periodic table for topological insulators and superconductors. In: AIP Conf. Proc., V. 1134 2009

  13. Li, B.: Real operator algebras. River Edge, NJ: World Scientific Pub Co Inc, 2003

  14. Lin, H.: Almost commuting selfadjoint matrices and applications. In: Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., Vol. 13, Providence, RI: Amer. Math. Soc., 1997, pp. 193–233

  15. Lin H.: Homomorphisms from C(X) into C*-algebras. Canad. J. Math. 49(5), 963–1009 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Loring T.A.: K-theory and asymptotically commuting matrices. Canad. J. Math. 40(1), 197–216 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loring T.A.: When matrices commute. Math. Scand. 82(2), 305–319 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Loring T.A.: Factorization of matrices of quaternions. Exp. Math. 30(3), 250–267 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Loring T.A., Hastings M.B.: Disordered topological insulators via C*-algebras. Europhys. Lett. 92, 67,004 (2010)

    Article  Google Scholar 

  20. Loring, T.A., Sørensen, A.P.W.: Almost commuting self-adjoint matrices—the real and self-dual cases. 1012.3494 v3 [math.04], 2013

  21. Mehta, M.: Random matrices. London-New York: Academic Press, 2004

  22. Pedersen G.K.: Factorization in C *-algebras. Exp. Math. 16(2), 145–156 (1998)

    MATH  Google Scholar 

  23. Prodan E.: Disordered topological insulators: a non-commutative geometry perspective. J. of Phys. A: Math. Theor. 44, 113,001 (2011)

    Article  MathSciNet  Google Scholar 

  24. Schröder, H.: K-theory for real C*-algebras and applications, Pitman Research Notes in Mathematics Series, Vol. 290. Harlow: Longman Scientific & Technical, 1993

  25. Soluyanov A., Vanderbilt D.: Wannier representation of \({\mathbb{Z}_2}\) topological insulators. Phys. Rev. B 83(3), 035,108 (2011)

    Article  Google Scholar 

  26. Sørensen, A.: Semiprojectivity and the geometry of graphs. Ph.D. thesis, University of Copenhagen (2012). http://www.math.ku.dk/noter/filer/phd12apws.pdf

  27. Took C., Mandic D.: The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. on Sig. Proc. 57(4), 1316–1327 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Voiculescu D.: Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci. Math. (Szeged) 45(1-4), 429–431 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Wax M., Sheinvald J.: A least-squares approach to joint diagonalization. IEEE Sig. Proc. Lett. 4(2), 52–53 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry A. Loring.

Additional information

Communicated by A. Connes

This work was partially supported by a grant from the Simons Foundation (208723) and by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loring, T.A., Sørensen, A.P.W. Almost Commuting Unitary Matrices Related to Time Reversal. Commun. Math. Phys. 323, 859–887 (2013). https://doi.org/10.1007/s00220-013-1799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1799-6

Keywords

Navigation