Skip to main content
Log in

Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas D., Naor A.: The two possible values of the chromatic number of a random graph. Ann. of Math. 162, 1335–1351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenmana M., Ruzmaikina A.: Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab. 33(1), 82–113 (2005)

    Article  MathSciNet  Google Scholar 

  3. AizenmanM. Sims R., Starr S.: Extended variational principle for the Sherrington-Kirkpatrick spin-glass model. Physi. Revi. B 68(21), 214403 (2003)

    Article  ADS  Google Scholar 

  4. Aizenman, M., Sims, R., Starr, S.: Mean-Field Spin Glass models from the Cavity-ROSt Perspective. In: Mourao, J.C. Nunes, J.P. Picken R., Zambrini J.-C., (eds), In: Prospects in Mathematical Physics, Contemporary Mathematics, Vol 437, Providence RI: Ameri. Math. Soc.,2007, pp. 1–30

  5. Arguin, L.P., Chatterjee S.: Random overlap structures: properties and applications to spin glasses. Prob. Theor. Rel. Fields to appear, available at http://arxiv.org/abs/1011.1823v3 [math.PR], 2012

  6. Bayati, M., Gamarnik, D., Tetali P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: Proceedings of the 42nd ACM symposium on Theory of computing, Newyork: ACM, 2010, pp. 105–114

  7. Bovier A., Klimovsky A.: The Aizenman-Sims-Starr and Guerras schemes for the SK model with multidimensional spins. Electron. J. Prob. 14, 161–241 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Braunstein A., Mulet R., Pagnani A., Weigt M., Zecchina R.: Polynomial iterative algorithms for coloring and analyzing random graphs. Phys. Rev. E. 68(3), 36702 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dembo A., Montanari A.: Ising models on locally tree-like graphs. The Ann. Appl. Prob. 20(2), 565–592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dembo A., Zeitouni O.: Large Deviation Techniques and Applications. Applications of Mathematics, V. 38, Newyork: Springer Verlag, New York, Inc., 1998

  11. Derrida B.: Random-energy model: Limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. Dommers S., Giardinà C., van~der Hofstad R.: Ising models on power-law random graphs. J. Stat. Phys. 141(4), 638–660 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Franz S., Leone M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111, 535–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Guerra F., Toninelli F.L.: Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model. J. Math. Phys. 43(3704), 13 (2002)

    Google Scholar 

  16. Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Guerra F., Toninelli F.L.: The high-temperature region of the Viana-Bray diltued spin glass model. J. Stat. Phys. 115(1–2), 531–555 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kingman J.F.C.: Random partitions in population genetics. Proc. Roy. Soc. London Ser. A 361(1704), 1–20 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kingman J.F.C.: The representation of partition structures. J. London Math. Soc. 2(18(2)), 374–380 (1978)

    Article  MathSciNet  Google Scholar 

  20. Krzakala F., Zdeborova L.: Potts glass on random graphs. Europhys. Lett. 81, 57005 (2008)

    Article  ADS  Google Scholar 

  21. Mézard M., Parisi G.: The Bethe lattice spin glass revisited. Euro. Phys. J. B. 20(2), 217–233 (2001)

    Article  ADS  Google Scholar 

  22. Mézard M., Parisi G., Virasoro M.-A.: Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, V. 9. Singapore: World Scientific, 1986

  23. Panchenko D., Talagrand M.: Bounds for diluted mean-fields spin glass models. Prob. Th. Rel. Fields 130(3), 319–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pitman J.: Poisson-Kingman Partitions. In: Statistics and science: a Festschrift for Terry Speed, ed. Darlene R. Goldstein, IMS Lecture Notes-Monograph Series, Vol 40, Beachwood, OH:IMS, 2003, pp. 1–34

  25. Pólya G., Szegö G.: Problems and Theorems in Analysis: Series, integral calculus, theory of functions. Berlin-Heidelberg-Newyork: Springer Verlag, 1998

  26. Ruelle D.: A mathematical formula of Derrida’s REM and GREM. Commun. Math. Phys. 108(2), 225–239 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Sherrington D., Kirkpatrick S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  ADS  Google Scholar 

  28. Talagrand M.: The Parisi formula. Ann. Math.-Second Series 163(1), 221–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. van Mourik J., Saad D.: Random graph coloring: Statistical physics approach. Phys. Rev. E 66(5), 56120 (2002)

    Article  Google Scholar 

  30. Zdeborová L., Krzakala F.: Phase transitions in the coloring of random graphs. Phys. Rev. E 76(3), 031131 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Contucci.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contucci, P., Dommers, S., Giardinà, C. et al. Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph. Commun. Math. Phys. 323, 517–554 (2013). https://doi.org/10.1007/s00220-013-1778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1778-y

Keywords

Navigation