Skip to main content
Log in

QCD on an Infinite Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a mathematically well–defined framework for the kinematics of Hamiltonian QCD on an infinite lattice in \({\mathbb{R}^3}\) , and it is done in a C*-algebraic context. This is based on the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph e.a.. To extend this model to an infinite lattice, we need to take an infinite tensor product of nonunital C*-algebras, which is a nonstandard situation. We use a recent construction for such situations, developed by Grundling and Neeb. Once the field C*-algebra is constructed for the fermions and gauge bosons, we define local and global gauge transformations, and identify the Gauss law constraint. The full field algebra is the crossed product of the previous one with the local gauge transformations. The rest of the paper is concerned with enforcing the Gauss law constraint to obtain the C*-algebra of quantum observables. For this, we use the method of enforcing quantum constraints developed by Grundling and Hurst. In particular, the natural inductive limit structure of the field algebra is a central component of the analysis, and the constraint system defined by the Gauss law constraint is a system of local constraints in the sense of Grundling and Lledo. Using the techniques developed in that area, we solve the full constraint system by first solving the finite (local) systems and then combining the results appropriately. We do not consider dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann C.A., Pedersen G.K., Tomiyama J.: Multipliers of C*-algebras. J. Funct. Anal. 13, 277–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackadar, B.: Operator Algebras. Berlin Heidelberg-New York: Springer, 2006

  3. Blackadar B.: Infinite tensor products of C*-algebras, Pac. J. Math. 77, 313–334 (1977)

    MathSciNet  Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. New York: Springer, 1987

  5. Carey A.L., Ruijsenaars S.N.M.: On fermion gauge groups, current algebras and Kac–Moody algebras. Acta Appl. Math. 10, 1–86 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costello, P.: The mathematics of the BRST-constraint method. PhD thesis Univ. of New South Wales, 2008, http://arxiv.org/abs/0905.3570v2 [math.OA], 2009

  7. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton NJ: Princeton University Press, 1992

  8. Landsman N.P.: Rieffel induction as generalised quantum Marsden–Weinstein reduction. J. Geom. Phys. 15, 285–319 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Giulini D., Marolf D.: On the generality of refined algebraic quantization. Class. Quant. Grav. 16, 2479–2488 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Klauder J.: Coherent state quantization of constraint systems. Ann. Physics 254, 419–453 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Faddeev L., Jackiw R.: Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Creutz, M.: Quarks, gluons and lattices. Cambridge: Cambridge University Press, 1983

  13. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science: Yeshiva University, 1964

  14. Glöckner H.: Direct limit Lie groups and manifolds. J. Math. Kyoto Univ. 43, 1–26 (2003)

    MATH  Google Scholar 

  15. Grundling H., Neeb K-H.: Full regularity for a C*-algebra of the Canonical Commutation Relations, Rev. Math. Phys. 21, 587–613 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Grundling H.: Quantum constraints. Rep. Math. Phys. 57, 97–120 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Grundling H., Hurst C.A.: Algebraic quantization of systems with a gauge degeneracy. Commun. Math. Phys. 98, 369–390 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Grundling, H., Hurst, C.A.: The quantum theory of second class constraints: Kinematics. Commun. Math. Phys. 119, 75–93 (1988) [Erratum: ibid. 122, 527–529 (1989)]

    Google Scholar 

  19. Grundling H.: Systems with outer constraints. Gupta–Bleuler electromagnetism as an algebraic field theory. Commun. Math. Phys. 114, 69–91 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Grundling H., Lledo F.: Local Quantum Constraints. Rev. Math. Phys. 12, 1159–1218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haag, R.: Local Quantum Physics. Berlin: Springer Verlag, 1992

  22. Hannabuss, K.: Some C*-algebras associated to quantum gauge theories. http://arxiv.org/abs/1008.0496v2 [hepth], 2010

  23. Huebschmann J., Rudolph G., Schmidt M.: A lattice gauge model for quantum mechanics on a stratified space. Commun. Math. Phys. 286, 459–494 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Isham, C.J.: Modern differential geometry for physicists (2nd ed.). Singapore: World Scientific, 1999

  25. Jarvis P.D., Kijowski J., Rudolph G.: On the Structure of the Observable Algebra of QCD on the Lattice. J. Phys. A: Math. Gen. 38, 5359–5377 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II. New York: Academic Press, 1983

  27. Kijowski J., Rudolph G.: On the Gauss law and global charge for quantum chromodynamics. J. Math. Phys. 43, 1796–1808 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kijowski J., Rudolph G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. Kijowski J., Rudolph G., Thielman A.: Algebra of Observables and Charge Superselection Sectors for QED on the Lattice. Commun. Math. Phys. 188, 535–564 (1997)

    Article  ADS  MATH  Google Scholar 

  30. Kijowski J., Rudolph G., Sliwa C.: On the Structure of the Observable Algebra for QED on the Lattice. Lett. Math. Phys. 43, 299–308 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kogut J., Susskind L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)

    Article  ADS  Google Scholar 

  32. Kogut, J.: Three Lectures on Lattice Gauge Theory. CLNS-347 (1976), Lecture Series Presented at the International Summer School, McGill University, June 21–26, 1976

  33. Langmann E.: Fermion current algebras and Schwinger terms in (3+1)–dimensions. Commun. Math. Phys. 162, 1–32 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Mickelsson J.: Current algebra representations for 3+1 dimensional Dirac–Yang–Mills theory. Commun. Math. Phys. 117, 261 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Murphy, G.J.: C*-Algebras and Operator Theory. Boston, MA: Academic Press, 1990

  36. Napiorkowski K., Woronowicz S.: Operator theory in C*-framework. Rep. on Math. Phys. 31, 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Osterwalder K., Seiler E.: Gauge Field Theories on a Lattice. Ann. Phys. 110, 440–471 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  38. Palmer, T.W.: Banach Algebras and the General Theory of C*-algebras. Volume I; Algebras and Banach Algebras, Cambridge: Cambridge Univ. Press, 1994

  39. Pedersen, G.K.: C*-Algebras and their Automorphism Groups. London: Academic Press, 1989

  40. Raeburn, I.: Dynamical systems and Operator Algebras. In: Proceedings of the Centre for Mathematics and its Applications, Volume 36, p109, 1999, from National Symposium on Functional Analysis, Optimization and Applications, 1998 at The University of Newcastle (the electronic MS is at http://www.math.dartmouth.edu/archive/m123f00/public_html/DynSys5US.pdf)

  41. Rieffel M.A.: On the uniqueness of the Heisenberg commutation relations. Duke Math. J. 39, 745–752 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rosenberg J.: Appendix to O. Bratteli’s paper on “Crossed products of UHF algebras”. Duke Math. J. 46, 25–26 (1979)

    Article  MATH  Google Scholar 

  43. Rudolph G., Schmidt M.: On the algebra of quantum observables for a certain gauge model. J. Math. Phys. 50, 052102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  44. Seiler, E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Phys., Vol. 159, Berlin Heidelberg-New York: Springer, 1982

  45. Seiler, E.: “Constructive Quantum Field Theory: Fermions”. In: Gauge Theories: Fundamental Interactions and Rigorous Results, eds. P. Dita, V. Georgescu, R. Purice, Bosten, MA: Birkhäuser, 1982

  46. Takeda Z.: Inductive limit and infinite direct product of operator algebras. Tohoku Math. J. 7, 67–86 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  47. Takesaki, M.: Theory of operator algebras I. Springer–Verlag, New York, 1979

  48. Takesaki, M.: Theory of Operator Algebras III. Berlin: Springer-Verlag, 2003

  49. Varadarajan, V.S.: Geometry of Quantum Theory. Second edition, New York: Springer-Verlag, 1985

  50. Wegge-Olsen, N.E.: K–theory and C*-algebras. Oxford: Oxford Science Publications, 1993

  51. Williams, D.P.: Crossed products of C*-algebras. Providence, RI: Amer. Math. Soc., 2007

  52. Wilson K.G.: Confinement of quarks. Phys. Rev. D10, 2445 (1974)

    ADS  Google Scholar 

  53. Woronowicz S.L.: C*-algebras generated by unbounded elements. Rev. Math. Phys. 7, 481–521 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Grundling.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundling, H., Rudolph, G. QCD on an Infinite Lattice. Commun. Math. Phys. 318, 717–766 (2013). https://doi.org/10.1007/s00220-013-1674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1674-5

Keywords

Navigation