Advertisement

Communications in Mathematical Physics

, Volume 319, Issue 1, pp 69–110 | Cite as

From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction

  • Béatrice de TilièreEmail author
Article

Abstract

Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version \({\mathcal{G}}\) of this graph (Fisher in J Math Phys 7:1776–1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain \({\mathcal{G}_1}\). Our main result consists in explicitly constructing CRSFs of \({\mathcal{G}_1}\) counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon’s critical weight function (Kenyon in Invent Math 150(2):409–439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.

Keywords

Characteristic Polynomial Outgoing Edge Dual Graph Dime Model Oriented Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax86.
    Baxter R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A 404(1826), 1–33 (1986)MathSciNetADSCrossRefGoogle Scholar
  2. Bax89.
    Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1989. reprint of the 1982 originalGoogle Scholar
  3. BdT10a.
    Boutillier C., de Tilière B.: The critical Z-invariant ising model via dimers: Locality property. Commun. Math. Phys. 301(2), 473–516 (2011)ADSzbMATHCrossRefGoogle Scholar
  4. BdT10b.
    Boutillier C., de Tilière B.: The critical Z-invariant ising model via dimers: the periodic case. Prob. Th. Rel. Fields 147, 379–413 (2010)zbMATHCrossRefGoogle Scholar
  5. Fis66.
    Fisher M.E.: On the dimer solution of planar ising models. J. Math. Phys. 7, 1776–1781 (1966)ADSCrossRefGoogle Scholar
  6. For93.
    Forman R.: Determinants of Laplacians on graphs. Topology 32(1), 35–46 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Kas61.
    Kasteleyn P.W.: The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)ADSzbMATHCrossRefGoogle Scholar
  8. Kas67.
    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics. London: Academic Press 1967, pp. 43–110Google Scholar
  9. Ken02.
    Kenyon R.: The laplacian and dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Mes06.
    Messikh, R.J.: The surface tension near criticality of the 2d-Ising model. http://arxiv.org/abs/math/0610636v1 [math.PR], 2006
  11. MW73.
    McCoy, B., Wu, F.: The two-dimensional Ising model. Cambridge, MA: Harvard Univ. Press, 1973Google Scholar
  12. TF61.
    Temperley H.N.V., Fisher M.E.: Dimer problem in statistical mechanics-an exact result. Phil. Mag. 6(68), 1061–1063 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Wil11.
    Wilson, D.B.: XOR-Ising loops and the gaussian free field. http://arxiv.org/abs/1102.3782v1 [cond-mat:stat-mech], 2011

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie CurieParisFrance
  2. 2.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations