Skip to main content
Log in

The JLO Character for the Noncommutative Space of Connections of Aastrup-Grimstrup-Nest

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In an attempt to combine non-commutative geometry and quantum gravity, Aastrup-Grimstrup-Nest construct a semi-finite spectral triple, modeling the space of G-connections for GU(1) or SU (2). AGN show that the interaction between the algebra of holonomy loops \({\mathcal{B}}\) and the Dirac type operator \({\mathcal{D}}\) quantizes the Poisson structure of General Relativity in Ashtekar’s loop variables. This article generalizes AGN’s construction to any connected compact Lie group G. A construction of AGN’s semi-finite spectral triple in terms of an inductive limit of spectral triples is formulated. The refined construction permits the semi-finite spectral triple to be even when G is even dimensional. The Dirac-type operator \({\mathcal{D}}\) in AGN’s semi-finite spectral triple is a weighted sum of a basic Dirac operator on G. The weight assignment is a diverging sequence that governs the “volume” associated to each copy of G. The JLO cocycle of AGN’s triple is examined in terms of the weight assignment. An explicit condition on the weight assignment perturbations is given, so that the associated JLO class remains invariant. Such a condition leads to a functoriality property of AGN’s construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aastrup J., Grimstrup J., Nest R.: Holonomy loops, spectral triples and quantum gravity. Class. Quant. Grav. 26, 165001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aastrup J., Grimstrup J., Nest R.: A new spectral triple over a space of connections. Commun. Math. Phys. 290, 389–398 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Aastrup J., Grimstrup J., Nest R.: On spectral triples in quantum gravity I. Class. Quant. Grav. 26, 065011 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Aastrup J., Grimstrup J., Nest R.: On spectral triples in quantum gravity II. J. Noncommutative Geom. 3, 47–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aastrup J., Grimstrup J., Paschke M., Nest R.: On semi-classical states of quantum gravity and noncommutative geometry. Commun. Math. Phys. 302, 675–696 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Baez J.: Generalized measures in gauge theory. Lett. Math. Phys. 31, 213–223 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Baez J., Sawin S.: Functional integration on spaces of connections. J. Funct. Analy. 150, 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benameur M., Fack T.: Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras. Adv. in Math. 199, 29–87 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carey A., Phillips J.: Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50, 673–718 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carey A., Phillips J., Rennie A., Sukochev F.: The local index formula in semifinite von Neumann algebras I: Spectral flow. Adv. Math. 202, 451–516 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choksi J.: Inverse limits of measure spaces. Proc. London Math. Soc. S3(8), 321–480 (1958)

    Article  MathSciNet  Google Scholar 

  12. Connes, A.: On the spectral characterization of manifolds. http://arxiv.org/abs/0810.2088v1 [math.OA], 2008

  13. Getzler E., Szenes A.: On the Chern character of a theta-summable Fredholm module. J. Funct. Anal. 84, 343–357 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gracia-Bondía, J., Várilly, J., Figueroa, H.: Elements of Noncommutative Geometry. Basel Boston: Birkhäuser, 2000

  15. Jaffe A., Lesniewski A., Osterwalder K.: Quantum K-theory: the Chern character. Commun. Math. Phys. 112, 75–88 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. Knapp, A.: Lie Groups Beyond an Introduction. Basel Boston: Birkhäuser, 1996

  17. Kostant B.: Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition \({{\rm C}(\mathfrak{g}) = {\rm E} nd(v_{\rho}) \otimes {\rm C}(p)}\), and the \({\mathfrak{g}}\)-module structure of \({\wedge \mathfrak{g}}\). Adva. in Math. 2, 275–350 (1997)

    Article  MathSciNet  Google Scholar 

  18. Lai, A.: On type II noncommutative geometry and the JLO character. http://arxiv.org/abs/1003.4226v2 [math-ph], 2010

  19. Meinrenken, E.: Lie groups and Clifford algebras. http://www.math.toronto.edu/mein/teaching/clif1.pdf, 2005

  20. Meyer, R.: Local and Analytic Cyclic Homology. Eürich: European Mathematical Society, 2007

  21. Mitter P.K., Viallet C.M.: On the bundle of connections and the gauge orbit manifold in yang-mills theory. Commun. Math. Phys. 79, 457–472 (1981)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. New York: Academic Press Inc., 1970

  23. Rovelli, C.: Quantum Gravity. Cambridge: Cambridge University Press, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Lai.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, A. The JLO Character for the Noncommutative Space of Connections of Aastrup-Grimstrup-Nest. Commun. Math. Phys. 318, 1–34 (2013). https://doi.org/10.1007/s00220-013-1665-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1665-6

Keywords

Navigation