Skip to main content
Log in

The Monge Problem for Distance Cost in Geodesic Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish space and d L is a geodesic Borel distance which makes (X, d L ) a non branching geodesic space. We show that under the assumption that geodesics are d-continuous and locally compact, we can reduce the transport problem to 1-dimensional transport problems along geodesics. We introduce two assumptions on the transport problem π which imply that the conditional probabilities of the first marginal on each geodesic are continuous or absolutely continuous w.r.t. the 1-dimensional Hausdorff distance induced by d L . It is known that this regularity is sufficient for the construction of a transport map. We study also the dynamics of transport along the geodesic, the stability of our conditions and show that in this setting d L -cyclical monotonicity is not sufficient for optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosio L., Kirchheim B.: Currents in metric spaces. Acta Mathematica 185(1), 1–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L., Kirchheim B., Pratelli A.: Existence of optimal transport maps for crystalline norms. Duke Math. J. 125(2), 207–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchini S., Caravenna L.: On the extremality, uniqueness and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4(4), 353–454 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bianchini S., Gloyer M.: The Euler-Lagrange equation for a singular variational problem. Math. Z. 265(4), 889–923 (2009)

    Article  MathSciNet  Google Scholar 

  5. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics. Providence, RI: Amer. Math. Soc., 2001

  6. Caffarelli L., Feldman M., McCann R.J.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15, 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caravenna, L.: An existence result for the Monge problem in \({\mathbb{R}^n}\) with norm cost function. Preprint, 2009, available at http://cvgnt.sns.it/paper-11303

  8. Champion T., De Pascale L.: The Monge problem in \({\mathbb{R}^d}\). Duke Math. J. 157(3), 551–572 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem, Current Developments in Mathematics, Boston, MA: Dul Press, 1999, pp. 65–126

  10. Feldman M., McCann R.: Monge’s transport problem on a Riemannian manifold. Trans. Amer. Math. Soc. 354, 1667–1697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fremlin, D.H.: Measure Theory, Volume 4. Torres Fremlin, 2002, available at http://www.essex.ac.vk/maths/people/termlin/mty.2006/index.html

  12. Larman D.G.: A compact set of disjoint line segments in \({\mathbb{R}^{3}}\) whose end set has positive measure. Mathematika 18, 112–125 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ohta S.-I.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Srivastava, A.M.: A course on Borel sets. Berlin-Heidleberg-New York: Springer, 1998

  16. Sturm K.T.: On the geometry of metric measure spaces. I. Acta Math 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sturm K.T.: On the geometry of metric measure spaces. II. Acta Math 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sudakov V.N.: Geometric problems in the theory of dimensional distributions. Proc. Steklov Inst. Math. 141, 1–178 (1979)

    MathSciNet  Google Scholar 

  19. Trudinger N., Wang X.J.: On the Monge mass transfer problem. Calc. Var. PDE 13, 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Villani, C.: Optimal transport, old and new. Berlin-Heidleberg-New York: Springer, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cavalletti.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchini, S., Cavalletti, F. The Monge Problem for Distance Cost in Geodesic Spaces. Commun. Math. Phys. 318, 615–673 (2013). https://doi.org/10.1007/s00220-013-1663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1663-8

Keywords

Navigation