Skip to main content
Log in

Quantum Open-Closed Homotopy Algebra and String Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homotopy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string backgrounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kapustin A., Rozansky L.: On the relation between open and closed topological strings. Commun. Math. Phys. 252, 393–414 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Fuchs E., Kroyter M.: Analytical Solutions of Open String Field Theory. Phys. Rept. 502, 89–149 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  3. Witten E.: Interacting Field Theory of Open Superstrings. Nucl. Phys. B276, 291 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. Schwarz A.S.: Grassmannian and string theory. Commun. Math. Phys. 199, 1–24 (1998)

    Article  ADS  MATH  Google Scholar 

  5. Schwarz A.S.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993)

    Article  ADS  MATH  Google Scholar 

  6. Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. B69, 309–312 (1977)

    ADS  Google Scholar 

  7. DeWitt, B.: Supermanifolds. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge Univ. Press, 1984

  8. Getzler E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159, 265–285 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Witten E.: Noncommutative geometry and string field theory. Nucl. Phys. B268, 253 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. LeClair A., Peskin M.E., Preitschopf C.R.: String field theory on the conformal plane. 1. Kinematical principles. Nucl. Phys. B317, 411 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. Thorn C.B.: String field theory. Phys. Rept. 175, 1–101 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Zwiebach B.: Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B390, 33–152 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  13. Zwiebach B.: Oriented open - closed string theory revisited. Ann. Phys. 267, 193–248 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gaberdiel M.R., Zwiebach B.: Tensor constructions of open string theories. 1: Foundations. Nucl. Phys. B505, 569–624 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gaberdiel M.R., Zwiebach B.: Tensor constructions of open string theories. 2: Vector bundles, D-branes and orientifold groups. Phys. Lett. B410, 151–159 (1997)

    MathSciNet  ADS  Google Scholar 

  16. Moeller N., Sachs I.: Closed string cohomology in open string field theory. JHEP 1107, 022 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kajiura H., Stasheff J.: Homotopy algebras inspired by classical open-closed string field theory. Commun. Math. Phys. 263, 553–581 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kajiura H., Stasheff J.: Open-closed homotopy algebra in mathematical physics. J. Math. Phys. 47, 023506 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kajiura H.: Homotopy algebra morphism and geometry of classical string field theory. Nucl. Phys. B630, 361–432 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Markl M.: Loop homotopy algebras in closed string field theory. Commun. Math. Phys. 221, 367–384 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Chen, X.: Lie bialgebras and the cyclic homology of A structures in topology. http://arxiv.org/abs/1002.2939v3 [math.AT] 2010

  22. Cieliebak, K., Fukaya, K., Latschev, J.: Homological algebra related to surfaces with boundaries, unpublished

  23. Lada, T., Markl, M.: Strongly homotopy Lie algebras. http://arxiv.org/abs/hep-th/9406095v1, 1994

  24. Getzler E., Jones J.D.S.: A -algebras and the cyclic bar complex. Illinois J. Math. 34(2), 256–283 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Penkava, M., Schwarz, A.S.: A(infinity) algebras and the cohomology of moduli spaces. http://arxiv.org/abs/hep-th/9408064v2, 1994

  26. Akman, F.: On some generalizations of Batalin-Vilkovsky algebras. http://arxiv.org/abs/q-alg/9506027v3, 1996

  27. Bering K., Damgaard P.H., Alfaro J.: Algebra of higher antibrackets. Nucl. Phys. B478, 459–504 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  28. Witten E.: On background independent open string field theory. Phys. Rev. D46, 5467–5473 (1992)

    MathSciNet  ADS  Google Scholar 

  29. Witten E.: Some computations in background independent off-shell string theory. Phys. Rev. D47, 3405–3410 (1993)

    MathSciNet  ADS  Google Scholar 

  30. Shatashvili S.L.: Comment on the background independent open string theory. Phys. Lett. B311, 83–86 (1993)

    MathSciNet  ADS  Google Scholar 

  31. Shatashvili S.L.: On the problems with background independence in string theory. Alg. Anal. 6, 215–226 (1994)

    MathSciNet  Google Scholar 

  32. Baumgartl M., Sachs I., Shatashvili S.L.: Factorization conjecture and the open/closed string correspondence. JHEP 0505, 040 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. Witten, E.: Mirror manifolds and topological field theory. http://arxiv.org/abs/hep-th/9112056v1, 1996

  34. Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Iqbal A., Kozcaz C., Vafa C.: The Refined topological vertex. JHEP 0910, 069 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  36. Herbst, M.: Quantum A-infinity Structures for Open-Closed Topological Strings. http://arxiv.org/abs/hep-th/0602018v1, 2006

  37. Lazaroiu C.I.: String field theory and brane superpotentials. JHEP 2001(10), 018 (2001)

    Article  MathSciNet  Google Scholar 

  38. Herbst M., Lazaroiu C.-I., Lerche W.: Superpotentials, A-infinity relations and WDVV equations for open topological strings. JHEP 2005(02), 071 (2005)

    Article  MathSciNet  Google Scholar 

  39. Berkovits N.: Super Poincare covariant quantization of the superstring. JHEP 0004, 018 (2000)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Sachs.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münster, K., Sachs, I. Quantum Open-Closed Homotopy Algebra and String Field Theory. Commun. Math. Phys. 321, 769–801 (2013). https://doi.org/10.1007/s00220-012-1654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1654-1

Keywords

Navigation