Skip to main content
Log in

Correlators, Feynman Diagrams, and Quantum No-hair in deSitter Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a parametric representation for position-space Feynman integrals of a massive, self-interacting scalar field in deSitter spacetime, for an arbitrary graph. The expression is given as a multiple contour integral over a kernel whose structure is determined by the set of all trees (or forests) within the graph, and it belongs to a class of generalized hypergeometric functions. We argue from this representation that connected deSitter n-point vacuum correlation functions have exponential decay for large proper time-separation, and also decay for large spatial separation, to arbitrary orders in perturbation theory. Our results may be viewed as an analog of the so-called cosmic-no-hair theorem in the context of a quantized test scalar field. This work has significant overlap with a paper by Marolf and Morrison, which is being released simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen B.: Vacuum states in deSitter space. Phys. Rev. D 32, 3136 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  2. Axler S., Bourdon P., Ramey W.: Harmonic Function Theory. Springer, New York (2001)

    MATH  Google Scholar 

  3. Anderson M.T.: Existence and stability of even dimensional asymptotically de Sitter spaces. Ann. Henri Poincare 6, 801 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Binoth T., Guillet J.P., Heinrich G.: Reduction formalism for dimensionally regulated one-loop N-point integrals. Nucl. Phys. B 572, 361 (2000)

    Article  ADS  Google Scholar 

  5. Birke L., Fröhlich J.: KMS, etc. Rev. Math. Phys. 14, 829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogner C., Weinzierl S.: Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bogner C., Weinzierl S.: Resolution of singularities for multi-loop integrals. Comput. Phys. Commun. 178, 596 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bros J., Epstein H., Moschella U.: Particle decays and stability on the de Sitter universe. Ann. Henri Poincare 11, 611 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bros J., Epstein H., Moschella U.: Lifetime of a massive particle in a de Sitter universe. JCAP 0802, 003 (2008)

    Article  ADS  Google Scholar 

  10. Bros J., Epstein H., Moschella U.: Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time. Commun. Math. Phys. 196, 535 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bros J., Moschella U.: Two-point Functions and Quantum Fields in de Sitter Universe. Rev. Math. Phys. 8, 327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bros, J., Viano, G.A.: Connection between the harmonic analysis on the sphere and the harmonic analysis on the one-sheeted hyperboloid: an analytic continuation viewpoint I, II, III. Forum Math. 8, 621–658 (1996); 8, 659–722 (1996); 9, 165–192 (1997)

    Google Scholar 

  13. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Brunetti R., Fredenhagen K., Hollands S.: A remark on alpha vacua for quantum field theories on de Sitter space. JHEP 0505, 063 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Brunetti R., Fredenhagen K., Kohler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Brunetti R., Duetsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Bunch T.S.: BPHZ Renormalization of \({\lambda \varphi^{\ast\ast}4}\) field theory in curved space-time. Ann. Phys. 131, 118 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  18. Buchholz D., Schlemmer J.: Local temperature in curved spacetime. Class. Quant. Grav. 24, F25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Camporesi R., Higuchi A.: On the eigen functions of the dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Cardoso V., Natario J., Schiappa R.: Asymptotic quasinormal frequencies for black holes in non-asymptotically flat spacetimes. J. Math. Phys. 45, 4698 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Epstein H., Glaser V.: The role of locality in quantum field theory. Ann. Poincare Theor. Phys. A 19, 211–295 (1973)

    MathSciNet  Google Scholar 

  22. Friedlander F.G.: The wave equation on a curved space-time. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  23. Friedrich H.: Existence and structure of n-geodesically complete of future complete solutions of Einstein’s equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Friedrich H.: Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3, 101 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Gracia-Bondia, J.M., Lazzarini, S.: Connes-Kreimer-Epstein-Glaser renormalization. http://arxiv.org/abs//hep-th/0006106v2, 2000

  26. Gibbons G.W., Hawking S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  27. Goldstein K.: A note on α-vacua and interacting field theory on deSitter spacetime. Nucl. Phys. B 699, 325 (2003)

    Article  ADS  Google Scholar 

  28. Heinrich G., Binoth T.: A general reduction method for one-loop N-point integrals. Nucl. Phys. Proc. Suppl. 89, 246 (2000)

    Article  ADS  Google Scholar 

  29. Hepp K.: Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301 (1966)

    Article  ADS  MATH  Google Scholar 

  30. Higuchi A., Kouris S.S.: The covariant graviton propagator in deSitter spacetime. Class. Quant. Grav. 18, 4317 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Higuchi A., Kouris S.S.: On the scalar sector of the covariant graviton two-point function in deSitter spacetime. Class. Quant. Grav. 18, 2933 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Higuchi A., Weeks R.H.: The physical graviton two-point function in deSitter spacetime with S 3 spatial sections. Class. Quant. Grav. 20, 3005 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Higuchi, A.: Tree level vacuum instability in an interacting field theory in deSitter spacetime, http://arxiv.org/abs//hep-th/0809.1255v3 [gr-gc], 2008

  34. Higuchi A.: Decay of the free-theory vacuum of scalar field theory in deSitter spacetime in the interaction picture. Class. Quant. Grav. 26, 072001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  35. Higuchi A., Lee Y.C., Nicholas J.R.: More on the covariant retarded Green’s function for the electromagnetic field in de Sitter spacetime. Phys. Rev. D 80, 107502 (2009)

    Article  ADS  Google Scholar 

  36. Faizal M., Higuchi A.: On the FP-ghost propagators for Yang-Mills theories and perturbative quantum gravity in the covariant gauge in de Sitter spacetime. Phys. Rev. D 78, 067502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  37. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Hollands S., Wald R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Hollands S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273, 1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hollands, S.: Renormalization via flow equations on the sphere and deSitter spacetime, In preparation

  43. Hormander, L.: The analysis of linear partial differential operators I. 2nd edition, Berlin heidelberg-New York: Springer Verlag, 1990

  44. Itzykson C., Zuber J.B.: Quantum Field Theory. Dover Publ., New York (2005)

    Google Scholar 

  45. Jaekel, C.: In preparation

  46. Jones D.S.: Asymptotics of the hypergeometric function. Math. Meth. Appl. Sci. 24, 369 (2001)

    Article  MATH  Google Scholar 

  47. Kay B.S., Wald R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon. Phys. Rept. 207, 49 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  48. Kopper Ch., Meunier F.: Large momentum bounds from flow equations. Ann. Henri Poincaré 3, 435–450 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kopper C., Muller V.F.: Renormalization proof for massive \({\phi^{4}_{4}}\) theory on Riemannian manifolds. Commun. Math. Phys. 275, 331–372 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Kopper, Ch.: Renormierungstheorie mit Flußgleichungen. Aachen: Shaker Verlag, 1998

  51. Keller K.J.: Euclidean Epstein-Glaser renormalization. J. Math. Phys. 50, 103503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  52. Keller, K.J.: Dimensional Regularization in Position Space and a Forest Formula for Regularized Epstein-Glaser Renormalization. http://arXiv.org/abs/1006.2148v1 [math-ph], 2010

  53. Kodama H., Ishibashi A.: A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions. Prog. Theor. Phys. 110, 701 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Krajewski T., Rivasseau V., Tanasa A., Wang Z.: Topological graph polynomials and quantum field theory, part I: heat kernel theories. J. Noncommut. Geom. 4, 29–82 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Magnen J., Rivasseau V.: Constructive ϕ4 field theory without tears. Ann. Henri Poincare 9, 403–424 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Marolf D., Morrison I.A.: The IR stability of de Sitter: Loop corrections to scalar propagators. Phys. Rev. D 82, 105032 (2010)

    Article  ADS  Google Scholar 

  57. Marolf D., Morrison I.A.: The IR-stability of deSitter QFT: results at all orders. Phys. Rev. D 84, 044040 (2011)

    Article  ADS  Google Scholar 

  58. Moretti V.: Proof of the symmetry of the off-diagonal Hadamard/Seeley-deWitt’s coefficients in C(infinity) Lorentzian manifolds by a ‘local Wick rotation’. Commun. Math. Phys. 212, 165 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Mottola E.: Particle creation in De Sitter space. Phys. Rev. D 31, 754 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  60. Mazur P., Mottola E.: Spontaneous breaking of De Sitter symmetry by radiative effects. Nucl. Phys. B 278, 694 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  61. Antoniadis I., Mottola E.: Graviton fluctuations in De Sitter space. J. Math. Phys. 32, 1037 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Müller V.F.: Perturbative renormalization by flow equations. Rev. Math. Phys. 15, 491–557 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Osterwalder K., Schrader R.: Axioms for euclidean green’s functions. 1. Commun. Math. Phys. 31, 83 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Osterwalder K., Schrader R.: Axioms for euclidean green’s functions. 2. Commun. Math. Phys. 42, 281 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Srivastava H.M., Panda R.: Some bilateral generating functions for a class of generalized hypergeometric polynomials. J. Reine Angew. Math. 283, 265 (1976)

    MathSciNet  Google Scholar 

  66. Srivastava H.M., Panda R.: Expansion theorems for the H-function of several complex variables. J. Reine Angew. Math. 288, 129 (1976)

    MathSciNet  Google Scholar 

  67. Sarivastava, H.M., Sarivastava, A.: A new class of orthogonal expansions for the H-function of several variables, Comment. Math. Univ. St Paul, 27, 59-69

  68. Mathur B.L.: Some results concerning a special function of several complex variables. Indian J. Pure Appl. Math. 12(8), 1001 (1980)

    MathSciNet  Google Scholar 

  69. Pinter G.: The Hopf algebra structure of Connes and Kreimer in Epstein-Glaser renormalization. Lett. Math. Phys. 54, 227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. Polyakov A.M.: DeSitter space and eternity. Nucl. Phys. B 797, 199 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Polyakov A.M.: Decay of vacuum energy. Nucl. Phys. B 834, 316–329 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Radzikowski M.J.: Micro-local approach to the hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Sanders K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485 (2010)

    Article  ADS  MATH  Google Scholar 

  74. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Tsamis N.C., Woodard R.P.: Quantum gravity slows inflation. Nucl. Phys. B 474, 235 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Tsamis N.C., Woodard R.P.: The quantum gravitational back-reaction on inflation. Ann. Phys. 253, 1 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Tsamis N.C., Woodard R.P.: Strong infrared effects in quantum gravity. Ann. Phys. 238, 1 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  78. Tsamis N.C., Woodard R.P.: The Structure of perturbative quantum gravity on a De Sitter background. Commun. Math. Phys. 162, 217 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Tsamis N.C., Woodard R.P.: Physical Green’s functions in quantum gravity. Ann. Phys. 215, 96 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  80. Tutte W.T.: Graph Theory. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  81. Urakawa Y., Tanaka T.: Natural selection of inflationary vacuum required by infra-red regularity and gauge-invariance. Prog. Theor. Phys. 125, 1067–1089 (2011)

    Article  ADS  MATH  Google Scholar 

  82. Urakawa Y., Tanaka T.: IR divergence does not affect the gauge-invariant curvature perturbation. Phys. Rev. D 82, 121301 (2010)

    Article  ADS  Google Scholar 

  83. Urakawa Y., Tanaka T.: Influence on observation from IR divergence during inflation – Multi field inflation –. Prog. Theor. Phys. 122, 1207 (2010)

    Article  ADS  Google Scholar 

  84. Urakawa Y., Tanaka T.: Influence on observation from IR divergence during inflation I. Prog. Theor. Phys. 122, 779 (2009)

    Article  ADS  MATH  Google Scholar 

  85. Vilenken, N.Y., Klimyk, A.U.: Representations of Lie-Groups and Special Functions. Vol. 1–3, Dordrecht: Kluwer Acad. Publ., 1991

  86. Polchinski J.: Renormalization and effective Lagrangians. Nucl. Phys. B 231, 269–295 (1984)

    Article  ADS  Google Scholar 

  87. Wegner F., Houghton A.: Renormalization group equations for critical phenomena. Phys. Rev. A 8, 401–412 (1973)

    Article  ADS  Google Scholar 

  88. Wilson K.: Renormalization group and critical phenomena I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B4, 3174–3183 (1971)

    ADS  Google Scholar 

  89. Wilson K.: Renormalization group and critical phenomena II. Phase cell analysis of critical behaviour. Phys. Rev. B4, 3184–3205 (1971)

    ADS  Google Scholar 

  90. Zimmermann, W.: Convergence of Bogolyubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208 (1969) [Lect. Notes Phys. 558, 217 (2000)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hollands.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S. Correlators, Feynman Diagrams, and Quantum No-hair in deSitter Spacetime. Commun. Math. Phys. 319, 1–68 (2013). https://doi.org/10.1007/s00220-012-1653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1653-2

Keywords

Navigation