Skip to main content
Log in

From Particle Systems to the Landau Equation: A Consistency Result

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a system of N classical particles, interacting via a smooth, short-range potential, in a weak-coupling regime. This means that N tends to infinity when the interaction is suitably rescaled. The j-particle marginals, which obey the usual BBGKY hierarchy, are decomposed into two contributions: one small but strongly oscillating, the other hopefully smooth. Eliminating the first, we arrive to establish the dynamical problem in terms of a new hierarchy (for the smooth part) involving a memory term. We show that the first order correction to the free flow converges, as N →∞, to the corresponding term associated to the Landau equation. We also show the related propagation of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsen’ev, A.A., Buryak, O.E.: On a connection between the solution of the Boltzmann equation and the solution of the Landau–Fokker–Planck equation (in Russian), Mat. Sb 181, 435–446 (1990); translated at Math. USSR-Sb. 69, 465–478 (1991)

    Google Scholar 

  2. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. New York: John Wiley & Sons, 1975

  3. Benedetto D., Castella F., Esposito R., Pulvirenti M.: Some considerations on the derivation of the nonlinear quantum Boltzmann equation. J. Stat. Phys. 116, 381–410 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Benedetto D., Castella F., Esposito R., Pulvirenti M.: On the weak-coupling limit for bosons and fermions. Math. Mod. Meth. Appl. Sci. 15, 1–33 (2005)

    Article  MathSciNet  Google Scholar 

  5. Benedetto D., Castella F., Esposito R., Pulvirenti M.: From the N-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime. Commun. Math. Phys. 277, 1–44 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bobylev, A.V.: Expansion of Boltzmann collision integral in Landau series (in Russian). Doklady AN SSSR 225, 535–538 (1975), translated at Sov. Phys. Dokl. 20, 740–742 (1976)

  7. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, Vol. 106, New York: Springer-Verlag, 1994

  8. Degond P., Lucquin–Desreux B.: The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Mod. Meth. Appl. Sci. 2, 167–182 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Comm. Part. Diff. Eqs. 25, 261–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Comm. Part. Diff. Eqs. 25, 179–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dürr D., Goldstein S., Lebowitz J.L.: Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Commun. Math. Phys. 113, 209–230 (1987)

    Article  ADS  MATH  Google Scholar 

  12. Erdös L., Salmhofer M., Yau H- T.: On the quantum Boltzmann equation. J. Stat. Phys. 116, 367–380 (2004)

    Article  ADS  MATH  Google Scholar 

  13. Goudon T.: On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Stat. Phys. 89, 751–776 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Ho N.T., Landau L.J.: Fermi gas in a lattice in the van Hove limit. J. Stat. Phys. 87, 821–845 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Lanford III, O.: Time evolution of large classical systems. Lecture Notes in Physics 38, J. Moser, ed., Berlin-Heidelberg-New York: Springer-Verlag, 1975, pp. 1–111

  17. Landau L.D.: Kinetic equation in the case of Coulomb interaction. (in German). Phys. Zs. Sow. Union 10, 154 (1936)

    MATH  Google Scholar 

  18. Lifshitz, E.M., Pitaevskii, L.P.: Course of Theoretical Physics Vol. 10, Oxford-Elmsford, NY: Pergamon Press, 1981

  19. Lukkarinen J., Spohn H.: Weakly nonlinear Schrödinger equation with random initial data. Inv. Math. 183, 79–188 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bogolyubov, N.N.: Problems of a dynamical theory in Statistical Physics. (Moscow: State Technical Press, 1946, in Russian); English translation in Studies in Statistical Mechanics I, edited by J. de Boer, G. E. Uhlenbeck, part A, Amsterdam: North-Holland, 1962

  21. Pulvirenti, M.: The weak-coupling limit of large classical and quantum systems. In: “International Congress of Mathematicians”, Zürich: Eur. Math. Soc., 2006

  22. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics, Heidelberg: Springer-Verlag, 1991

  23. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, Vol. 1, ed. by S. Friedlander, D. Serre, Amsterdam: Elsevier/North-Holland, 2002, pp. 71–307

  24. Villani C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143, 273–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wigner E.: On the quantum correction for the thermodynamical equilibrium. Phys. Rev. 40, 742–759 (1932)

    Article  ADS  Google Scholar 

  26. Zwanzig, R.W.: Statistical Mechanics of Irreversibility. 1961 Lectures in Theoretical Physics, Vol. III New York: Interscience, pp. 106–141

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pulvirenti.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boblylev, A.V., Pulvirenti, M. & Saffirio, C. From Particle Systems to the Landau Equation: A Consistency Result. Commun. Math. Phys. 319, 683–702 (2013). https://doi.org/10.1007/s00220-012-1633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1633-6

Keywords

Navigation