Skip to main content
Log in

Approach to Equilibrium for the Stochastic NLS

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the approach to equilibrium, described by a Gibbs measure, for a system on a d-dimensional torus evolving according to a stochastic nonlinear Schrödinger equation (SNLS) with a high frequency truncation. We prove exponential approach to the truncated Gibbs measure both for the focusing and defocusing cases when the dynamics is constrained via suitable boundary conditions to regions of the Fourier space where the Hamiltonian is convex. Our method is based on establishing a spectral gap for the non self-adjoint Fokker-Planck operator governing the time evolution of the measure, which is uniform in the frequency truncation N. The limit N →∞ is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bismut J.-M.: The hypoelliptic Laplacian on the cotangent bundle. J. Amer. Math. Soc. 18, 379–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain J.: Periodic nonlinear Schrödinger equation and invariant measure. Commun. Math. Phys. 166, 1–26 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bourgain J.: Invariant measure for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bourgain, J.: Nonlinear Schrödinger equations. In: Hyperbolic Equations and Frequency Interactions, Caffarelli, L., E, W. (eds.), Vol. 5, IAS/Park City Mathematics Series, Providence, RI: Amer. Math. Soc., 1999, pp. 1–157

  5. Brydges D., Slade G.: Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation. Commun. Math. Phys. 182, 485–504 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin-Heidelberg-New York: Springer-Verlag, 1987

  7. Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. of Prob. 31, 1900–1916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckmann J.-P., Hairer M.: Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Commun. Math. Phys. 219, 523–565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Glimm, J., Jaffe A.: Quantum Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1987

  10. Herau F.: Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Func. Anal. 244, 95–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herau F., Hitrik M., Sjöstrand J.: Tunnel effect for Kramer-Fokker-Planck type operators. Ann. Henri Poincaré 9, 209–274 (2008)

    Article  ADS  MATH  Google Scholar 

  12. Jaffe, A.: Ann Arbor Lecture, 1994

  13. Kuksin S., Shirikyan A.: Stochastic dissipative PDE’s and Gibbs measure. Commun. Math. Phys. 213, 291–330 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Lebowitz J., Rose R., Speer E.: Statistical mechanics of the nonlinear Schrödinger equation. J Stat. Phys. 50, 657–687 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. McKean H., Vaninski K.: Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger. Commun. Math. Phys. 168, 479–491 (1995)

    Article  ADS  MATH  Google Scholar 

  16. Mounaix Ph., Collet P., Lebowitz J.: Nonequilibrium stationary state of a truncated stochastic nonlinear Schrödinger equation: Formulation and mean-field approximation. Phys. Rev. E 81, 031109 (2010)

    Article  ADS  Google Scholar 

  17. Odasso C.: Ergodicity for the stochastic complex Ginzburg-Landau equations. Annales de IHP Probabilité et Statistique 42, 417–454 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Simon, B.: The P(ϕ)2 Euclidean Quantum Field Theory. Princeton Series in Physics, Princeton, US: Princeton University Press, 1974

  19. Sjöstrand J.: Correlation asymptotics and Witten Laplacians. Algebra and Analysis 8(1), 160–191 (1996)

    MATH  Google Scholar 

  20. Sjöstrand, J.: Some results on non self-adjoint operators: a survey. In: Further progress in analysis, Hackensack, US: World Sci. Publ., 2009, pp. 45–75

  21. Spivak, M.: A Comprehensive Introduction to Differential Geometry, Vol. I. Berkeley, CA: Publish or Perish, 1970

  22. Tailleur J., Tanase-Nicola S., Kurchan J.: Kramers equation and supersymmetry. J. Stat. Phys. 122(4), 557–595 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Wang W.-M.: Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in \({\mathbb{Z}^{d}}\) . Ann. Henri Poincare 2(2), 237–307 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Witten E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Zhidkov P.: An invariant measure for the nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 317(3), 543–546 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Lebowitz.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Mounaix, P. & Wang, WM. Approach to Equilibrium for the Stochastic NLS. Commun. Math. Phys. 321, 69–84 (2013). https://doi.org/10.1007/s00220-012-1632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1632-7

Keywords

Navigation