Advertisement

Communications in Mathematical Physics

, Volume 319, Issue 1, pp 147–193 | Cite as

Gauge Theories and Macdonald Polynomials

  • Abhijit Gadde
  • Leonardo RastelliEmail author
  • Shlomo S. Razamat
  • Wenbin Yan
Article

Abstract

We study the \({\mathcal{N}=2}\) four-dimensional superconformal index in various interesting limits, such that only states annihilated by more than one supercharge contribute. Extrapolating from the SU(2) generalized quivers, which have a Lagrangian description, we conjecture explicit formulae for all A-type quivers of class \({\mathcal S}\), which in general do not have one. We test our proposals against several expected dualities. The index can always be interpreted as a correlator in a two-dimensional topological theory, which we identify in each limit as a certain deformation of two-dimensional Yang-Mills theory. The structure constants of the topological algebra are diagonal in the basis of Macdonald polynomials of the holonomies.

Keywords

Gauge Theory Partition Function Vector Multiplet Young Diagram Coulomb Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaiotto, D.: N =  2 dualities. http://arxiv.org/abs/0904.2715v1 [hep-th], 2009
  2. 2.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB Approximation. http://arxiv.org/abs/0907.3987v2 [hep-th], 2011
  3. 3.
    Cecotti, S., Vafa, C.: Classification of complete N =  2 supersymmetric theories in 4 dimensions. http://arxiv.org/abs/1103.5832v1 [hep-th], 2011
  4. 4.
    Cecotti, S., Neitzke, A., Vafa, C.: R-Twisting and 4d/2d Correspondences. http://arxiv.org/abs/1006.3435v2 [hep-th], 2010
  5. 5.
    Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A. et al.: BPS Quivers and Spectra of Complete N =  2 Quantum Field Theories. http://arxiv.org/abs/1109.4941v1 [hep-th], 2011
  6. 6.
    Anderson, M.T., Beem, C., Bobev, N., Rastelli, L.: Holographic Uniformization. http://arxiv.org/abs/1109.3724v1 [hep-th], 2011
  7. 7.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville Correlation Functions from Four-dimensional Gauge Theories. Lett. Math. Phys. 91, 167–197 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Wyllard N.: A N-1 conformal Toda field theory correlation functions from conformal N =  2 SU(N) quiver gauge theories. JHEP 11, 002 (2009)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Mironov A., Morozov A.: On AGT relation in the case of U(3). Nucl. Phys. B825, 1–37 (2010)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Nekrasov N.A.: Seiberg-Witten Prepotential From Instanton Counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)MathSciNetGoogle Scholar
  11. 11.
    Pestun V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Kinney J., Maldacena J.M., Minwalla S., Raju S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Romelsberger C.: Counting chiral primaries in N  =  1, d  =  4 superconformal field theories. Nucl. Phys. B747, 329–353 (2006)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Gadde A., Pomoni E., Rastelli L., Razamat S.S.: S-duality and 2d Topological QFT. JHEP 03, 032 (2010)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Gadde A., Rastelli L., Razamat S.S., Yan W.: The Superconformal Index of the E 6 SCFT. JHEP 08, 107 (2010)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Gadde A., Rastelli L., Razamat S.S., Yan W.: The 4d Superconformal Index from q-deformed 2d Yang-Mills. Phys. Rev. Lett. 106, 241602 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Romelsberger, C.: Calculating the Superconformal Index and Seiberg Duality. http://arxiv.org/abs/0707.3702v1 [hep-th], 2007
  18. 18.
    Festuccia G., Seiberg N.: Rigid Supersymmetric Theories in Curved Superspace. JHEP 1106, 114 (2011)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Dolan F.A., Osborn H.: Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N =  1 Dual Theories. Nucl. Phys. B818, 137–178 (2009)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Spiridonov V.P., Vartanov G.S.: Superconformal indices for \({{\mathcal{N}}=1}\) theories with multiple duals. Nucl. Phys. B824, 192–216 (2010)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Spiridonov V.P., Vartanov G.S.: Elliptic hypergeometry of supersymmetric dualities. Commun. Math. Phys. 303, 797–874 (2011)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Spiridonov V., Vartanov G.: Supersymmetric dualities beyond the conformal window. Phys. Rev. Lett. 105, 061603 (2010)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Gadde A., Rastelli L., Razamat S.S., Yan W.: On the Superconformal Index of N =  1 IR Fixed Points: A Holographic Check. JHEP 1103, 041 (2011)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Vartanov G.: On the ISS model of dynamical SUSY breaking. Phys. Lett. B696, 288–290 (2011)MathSciNetADSGoogle Scholar
  25. 25.
    Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices. http://arxiv.org/abs/1107.5788v2 [hep-th], 2011
  26. 26.
    Argyres P.C., Seiberg N.: S-duality in n =  2 supersymmetric gauge theories. JHEP 0712, 088 (2007)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Minahan J.A., Nemeschansky D.: An N = 2 superconformal fixed point with E(6) global symmetry. Nucl. Phys. B482, 142–152 (1996)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Aganagic M., Ooguri H., Saulina N., Vafa C.: Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings. Nucl. Phys. B715, 304–348 (2005)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Buffenoir E., Roche P.: Two-dimensional lattice gauge theory based on a quantum group. Commun. Math. Phys. 170, 669–698 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Klimcik C.: The formulae of Kontsevich and Verlinde from the perspective of the Drinfeld double. Commun. Math. Phys. 217, 203–228 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Aganagic, M., Shakirov, S.: Knot Homology from Refined Chern-Simons Theory. http://arxiv.org/abs/1105.5117v1 [hep-th], 2011
  32. 32.
    Benvenuti S., Hanany A., Mekareeya N.: The Hilbert Series of the One Instanton Moduli Space. JHEP 06, 100 (2010)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Hanany A., Mekareeya N.: Tri-vertices and SU(2)’s. JHEP 1102, 069 (2011)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Spiridonov, V.: Elliptic hypergeometric functions. http://arxiv.org/abs/0704.3099v1 [math.CA], 2007
  35. 35.
    Gadde, A., Pomoni, E., Rastelli, L.: The Veneziano Limit of N=2 Superconformal QCD: Towards the String Dual of N =  2 SU(N c) SYM with N f = 2 N c. http://arxiv.org/abs/0912.4918v1 [hep-th], 2009
  36. 36.
    Witten E.: On quantum gauge theories in two-dimensions. Commun. Math. Phys. 141, 153–209 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Witten E.: Two-dimensional gauge theories revisited. J. Geom. Phys. 9, 303–368 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Cordes S., Moore G.W., Ramgoolam S.: Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories. Nucl. Phys. Proc. Suppl. 41, 184–244 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Gray J., Hanany A., He Y.-H., Jejjala V., Mekareeya N.: SQCD: A Geometric Apercu. JHEP 0805, 099 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Hanany A., Mekareeya N.: Counting Gauge Invariant Operators in SQCD with Classical Gauge Groups. JHEP 0810, 012 (2008)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Minahan J. A., Nemeschansky D.: Superconformal fixed points with E(n) global symmetry. Nucl. Phys. B489, 24–46 (1997)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Macdonald I.G.: Symmetric functions and hall polynomials. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  43. 43.
    Chacaltana O., Distler J.: Tinkertoys for Gaiotto Duality. JHEP 1011, 099 (2010)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. http://arxiv.org/abs/1106.5698v2 [hep-th], 2011
  45. 45.
    Gaiotto, D., Moore, G.W., Tachikawa, Y.: On 6d N = (2,0) theory compactified on a Riemann surface with finite area. http://arxiv.org/abs/1110.2657v1 [hep-th], 2011
  46. 46.
    Gaiotto D., Neitzke A., Tachikawa Y.: Argyres-Seiberg duality and the Higgs branch. Commun. Math. Phys. 294, 389–410 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Gaiotto, D., Maldacena, J.: The gravity duals of N =  2 superconformal field theories. http://arxiv.org/abs/0904.4466v4 [hep-th], 2009
  48. 48.
    Nakayama Y.: Index for orbifold quiver gauge theories. Phys. Lett. B636, 132–136 (2006)MathSciNetADSGoogle Scholar
  49. 49.
    Nakayama Y.: Index for supergravity on AdS(5) x T**1,1 and conifold gauge theory. Nucl. Phys. B755, 295–312 (2006)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Awata H., Yamada Y.: Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra. JHEP 01, 125 (2010)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Schiappa, R., Wyllard, N.: An A r threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories. http://arxiv.org/abs/0911.5337v3 [hep-th], 2010
  52. 52.
    Mironov A., Morozov A., Shakirov S., Smirnov A.: Proving AGT conjecture as HS duality: extension to five dimensions. Nucl. Phys. B855, 128–151 (2012)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Blau, M., Thompson, G.: Lectures on 2-d gauge theories: Topological aspects and path integral techniques. http://arxiv.org/abs/hep-th/9310144v1, 1993
  54. 54.
    Dolan F., Spiridonov V., Vartanov G.: From 4d superconformal indices to 3d partition functions. phys. lett. B704, 234–241 (2011)MathSciNetADSGoogle Scholar
  55. 55.
    Gadde, A., Yan, W.: Reducing the 4d Index to the S 3 Partition Function. http://arxiv.org/abs/1104.2592v2 [hep-th], 2011
  56. 56.
    Imamura, Y.: Relation between the 4d superconformal index and the S 3 partition function. http://arxiv.org/abs/1104.4482v3 [hep-th], 2011
  57. 57.
    Benini F., Nishioka T., Yamazaki M.: 4d Index to 3d Index and 2d TQFT. Phys. rev. D86, 065015 (2012)ADSGoogle Scholar
  58. 58.
    Cherednik, I.: Double affine Hecke algebras. London Mathematical Society lecture note series. Cambridge: Cambridge University Press, 2005Google Scholar
  59. 59.
    Kirillov A.A. Jr: Lectures on affine hecke algebras and macdonald’s conjectures. Bull. Amer. Math. Soc. 34, 251–293 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Argyres P.C., Wittig J.R.: Infinite coupling duals of N =  2 gauge theories and new rank 1 superconformal field theories. JHEP 01, 074 (2008)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Benini F., Benvenuti S., Tachikawa Y.: Webs of five-branes and N =  2 superconformal field theories. JHEP 09, 052 (2009)MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Spiridonov, V., Vartanov, G.: Superconformal indices of N =  4 SYM field theories. http://arxiv.org/abs/1005.4196v3 [hep-th], 2011
  63. 63.
    Etingof, P.I., Kirillov, A.A. Jr.: On the affine analog of Jack’s and MacDonald’s polynomials. http://arxiv.org/abs/hep-th/9403168v2, 1995
  64. 64.
    Rains, E.M.: Transformations of Elliptic Hypergeometric Integrals. http://arxiv.org/abs/math/0309252v4 [math.QA], 2005
  65. 65.
    Rains, E.M.: BC n-symmetric abelian functions. http://arxiv.org/abs/math/0402113v2 [math.CO], 2006
  66. 66.
    Gorsky A., Nekrasov N.: Hamiltonian systems of Calogero type and two-dimensional Yang-Mills theory. Nucl. Phys. B414, 213–238 (1994)MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Minahan J.A., Polychronakos A.P.: Interacting fermion systems from two-dimensional QCD. Phys. Lett. B326, 288–294 (1994)ADSGoogle Scholar
  68. 68.
    Gorsky A., Nekrasov N.: Relativistic Calogero-Moser model as gauged WZW theory. Nucl. Phys. B436, 582–608 (1995)MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Gorsky, A., Nekrasov, N.: Elliptic Calogero-Moser system from two-dimensional current algebra. http://arxiv.org/abs/hep-th/9401021v1, 1994
  70. 70.
    Gorsky A.: Integrable many-body systems in the field theories. Theor. Math. Phys. 103, 681–700 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Gorsky, A., Mironov, A.: Integrable many body systems and gauge theories. http://arxiv.org/abs/hep-th/0011197v3, 2000
  72. 72.
    Gerasimov A.A., Shatashvili S.L.: Higgs Bundles, Gauge Theories and Quantum Groups. Commun. Math. Phys. 277, 323–367 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Ruijsenaars, S.: Elliptic integrable systems of Calogero-Moser type: A survey. Rokko Lectures in Math., no. 18, Kobe: Kobe Univ, 2009, pp. 201–221Google Scholar
  74. 74.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of Integrable Systems and Four Dimensional Gauge Theories. http://arxiv.org/abs/0908.4052v1 [hep-th], 2009
  75. 75.
    Nekrasov N., Witten E.: The Omega Deformation, Branes, Integrability, and Liouville Theory. JHEP 09, 092 (2010)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Spiridonov V.: Elliptic hypergeometric functions and calogero-sutherland-type models. Theoretical and Mathematical Physics 150, 266–277 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  77. 77.
    Spiridonov V.: Elliptic beta integrals and solvable models of statistical mechanics. Cont. Math. 563, 181–211 (2011)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Nishioka T., Tachikawa Y., Yamazaki M.: 3d Partition Function as Overlap of Wavefunctions. JHEP 1108, 003 (2011)MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Benvenuti, S., Pasquetti, S.: 3D-partition functions on the sphere: exact evaluation and mirror symmetry. http://arxiv.org/abs/1105.2551v1 [hep-th], 2012
  80. 80.
    Dobrev V., Petkova V.: All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry. Phys. Lett. B162, 127–132 (1985)MathSciNetADSGoogle Scholar
  81. 81.
    Dobrev V., Petkova V.: Group Theoretical Approach to Extended Conformal Supersymmetry: Function Space Realizations and Invariant Differential Operators. Fortsch. Phys. 35, 537 (1987)MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Dolan F.A., Osborn H.: On short and semi-short representations for four dimensional superconformal symmetry. Ann. Phys. 307, 41–89 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abhijit Gadde
    • 1
    • 2
  • Leonardo Rastelli
    • 1
    Email author
  • Shlomo S. Razamat
    • 1
    • 3
  • Wenbin Yan
    • 1
  1. 1.C.N. Yang Institute for Theoretical Physics, State University of New York at Stony BrookStony BrookUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Institute for Advanced StudyPrincetonUSA

Personalised recommendations