Skip to main content
Log in

Jack Superpolynomials with Negative Fractional Parameter: Clustering Properties and Super-Virasoro Ideals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Jack polynomials \({P_\lambda^{(\alpha)}}\) at α = −(k + 1)/(r − 1) indexed by certain (k, r, N)-admissible partitions are known to span an ideal \({I_{N}^{(k,r)}}\) of the space of symmetric functions in N variables. The ideal \({I_{N}^{(k,r)}}\) is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in \({I_{N}^{(k,r)}}\) admit clusters of size at most k: they vanish when k + 1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials \({P_\lambda^{(\alpha)}}\) at α = −(k + 1)/(r − 1) indexed by certain (k, r, N)-admissible superpartitions span an ideal \({\mathcal{I}_{N}^{(k,r)}}\) of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal \({\mathcal{I}_{N}^{(k,r)}}\) is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in \({\mathcal {I}_{N}^{(k,r)}}\) vanish when k + 1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of \({\mathcal{I}_{N}^{(k,2)}}\) provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k + 1 commuting variables are set equal to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E.: An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. USA 71, 4082–4085 (1974)

    Article  ADS  MATH  Google Scholar 

  2. Andrews G.E.: The theory of partitions. Cambridge Univ. Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  3. Ardonne E., Kedem R., Stone M.: Filling the Bose sea: symmetric quantum Hall edge states and affine characters. J. Phys. A: Math. Gen. 38, 617 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Baker, T.H., Dunkl, C.F., Forrester, P.J.: Polynomial eigenfunctions of the Calogero-Sutherland-Moser models with exchange terms. In: J. F. van Diejen, L. Vinet, Calogero-Sutherland-Moser Models, CRM Series in Mathematical Physics. Berlin-Heidelberg-New York: Springer 2000, pp. 37–42

  5. Baker T.H., Forrester P.J.: The Calogero-Sutherland model and polynomials with prescribed symmetry. Nucl. Phys. B 492, 682–716 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Baratta W., Forrester P.J.: Jack polynomial fractional quantum Hall states and their generalizations. Nucl. Phys. B 843, 362–381 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bernard D., Gaudin M., Haldane F.D., Pasquier V.: Yang-Baxter equation in long range interacting system. J. Phys. A A26, 5219–5236 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bernevig, B.A., Haldane, F.D.M.: Fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 101, 246806 (2008); Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter α. Phys. Rev. B77, 184502 (2008)

    Google Scholar 

  9. Bernevig B.A., Gurarie V., Simon S.H.: Central charge and quasihole scaling dimensions from model wavefunctions: towards relating Jack wavefunctions to W-algebras. J. Phys. A: Math. Theor. 42, 245206 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Brière, J.-F.: Les superpolynômes de Jack et leurs formules de Pieri. MSc thesis, Université Laval, 2008

  11. Brink L., Turbiner A., Wyllard N.: Hidden algebras of the (super) Calogero and Sutherland models. J. Math. Phys. 39, 1285–1315 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cardy J.: Calogero-Sutherland model and bulk-boundary correlations in conformal field theory. Phys. Lett. B 582, 121–126 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Corteel S., Lovejoy J.: Overpartitions. Trans. Amer. Math. Soc. 356, 1623–1635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corteel, S., Mallet, O.: Overpartitions, lattice paths and Rogers-Ramanujan identities. Presented at Formal Power Series and Algebraic Combinatorics, San Diego, California 2006, available at http://arxiv.org/abs/math/0601463v2 [math.CO], 2006

  15. Desrosiers P., Lapointe L., Mathieu P.: Supersymmetric Calogero-Moser-Sutherland models and Jack superpolynomials. Nucl. Phys. B606, 547–582 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. Desrosiers P., Lapointe L., Mathieu P.: Jack polynomials in superspace. Commun. Math. Phys. 242, 331–360 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  17. Desrosiers P., Lapointe L., Mathieu P.: Orthogonality of Jack polynomials in superspace. Adv. Math. 212, 361–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Desrosiers P., Lapointe L., Mathieu P.: Classical symmetric functions in superspace. J. Alg. Comb. 24, 209–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Desrosiers, P., Lapointe, L., Mathieu, P.: Evaluation and normalization of Jack polynomials in superspace. to appear in Int. Math. Res. Not., doi:10.1093/imrn/rnr235, 2011

  20. Dunkl C.F.: Orthogonal polynomials of types A and B and related Calogero models. Commun. Math. Phys. 197, 451–487 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Estienne B., Santachiara R.: Relating Jack wavefunctions to WA k-1 theories. J. Phys. A: Math. Theor. 42, 445209 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Feigin B.L., Nakanishi T., Ooguri H.: The annihilating ideal of minimal models. Int. J. Mod. Phys. A7, 217–238 (1992)

    MathSciNet  ADS  Google Scholar 

  23. Feigin B., Jimbo M., Miwa T., Mukhin E.: A differential ideal of symmetric polynomials spanned by Jack polynomials at β = −(r − 1)/(k + 1). Int. Math. Res. Not. 23, 1223–1237 (2002)

    Article  MathSciNet  Google Scholar 

  24. Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 23, 1015–1034 (2003)

    Article  MathSciNet  Google Scholar 

  25. Feigin B., Stoyanovsky A.V.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold. Funct. Anal. Appl. 28, 68–90 (1994)

    MathSciNet  Google Scholar 

  26. Forrester, P.J.: Selberg correlation integrals and the 1/r 2 quantum many-body system. Nucl. Phys. B 388, 671–699 (1992); Addendum to: “Selberg correlation integrals and the 1/r 2 quantum many-body system”. Nucl. Phys. B 416, 377–385 (1994)

    Google Scholar 

  27. Fortin J.-F., Jacob P., Mathieu P.: \({\mathcal{SM}(2,4\kappa)}\) fermionic characters and restricted jagged partitions. J. Phys. A38, 1699–171 (2005)

    MathSciNet  ADS  Google Scholar 

  28. Frappat L., Sciarrino A., Sorba P.: Dictionary on Lie Algebras and Superalgebras. Academic Press, London-NewYork (2000)

    MATH  Google Scholar 

  29. Freedman D.Z., Mende P.F.: An exactly solvable N-particle system in supersymmetric quantum mechanics. Nucl. Phys. B 344, 317–343 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  30. Froehlich J., Grandjean O., Recknagel A.: Supersymmetric quantum theory and differential geometry. Commun. Math. Phys. 193, 527–594 (1998)

    Article  ADS  MATH  Google Scholar 

  31. Jacob, P., Mathieu, P.: The \({Z_k^{su(2),3/2}}\) parafermions. Phys. Lett. B627, 224–232 (2005); Mathieu, P.: The W k structure of the \({Z_k^{(3/2)}}\) models. J. Phys. A: Math. Theor. 42, 375212 (2009)

    Google Scholar 

  32. Jolicoeur Th., Luque J.-G.: Highest weight Macdonald and Jack polynomials. J. Phys. A: Math. Theor. 44, 055204 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Kasatani M.: Subrepresentations in the polynomial representation of the double affine Hecke algebra of type GL n at t k+1 q r+1 =  1. Int. Math. Res. Not. 28, 1717–1742 (2005)

    Article  MathSciNet  Google Scholar 

  34. Knop F., Sahi S.: A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128, 9–22 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Lapointe, L., Le Borgne, Y., Nadeau, P.: A normalization formula for the Jack polynomials in superspace and an identity on partitions. Electronic J. Comb. 16, Article #R70 (2009)

  36. Lavertu, P.-L.: Modèles parafermioniques en superespace. MSc thesis, Université Laval, 2008; Lavertu, P.-L., Mathieu, P.: Parafermions in superspace. In preparation

  37. Lovejoy J.: Gordon’s theorem for overpartitions. J. Comb. Theory A 103, 393–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Macdonald I.G.: Symmetric functions and Hall polynomials. 2nd ed., The Clarendon Press/Oxford University Press, London (1995)

    MATH  Google Scholar 

  39. Melzer, E.: Supersymmetric Analogs of the Gordon-Andrews Identities, and Related TBA Systems. hep-th/9412154 (unpublished)

  40. Opdam E.M.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Read N., Rezayi E.: Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B59, 8084–8092 (1999)

    ADS  Google Scholar 

  42. Sakamoto R., Shiraishi J., Arnaudon D., Frappat L., Ragoucy E.: Correspondence between conformal field theory and Calogero-Sutherland model. Nucl. Phys. B 704, 490–509 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. Shastry B.S., Sutherland B.: Superlax pairs and infinite symmetries in the 1/r 2 system. Phys. Rev. Lett. 70, 4029–4033 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Stanley R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1988)

    Article  MathSciNet  Google Scholar 

  45. Zamolodchikov A.B., Fateev V.A.: Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in \({\mathbb{Z}_N}\) -symmetrical statistical systems. Sov. Phys. JETP 43, 215–225 (1985)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Mathieu.

Additional information

Communicated by P. Forrester

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desrosiers, P., Lapointe, L. & Mathieu, P. Jack Superpolynomials with Negative Fractional Parameter: Clustering Properties and Super-Virasoro Ideals. Commun. Math. Phys. 316, 395–440 (2012). https://doi.org/10.1007/s00220-012-1592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1592-y

Keywords

Navigation