Skip to main content
Log in

Delocalization of Slowly Damped Eigenmodes on Anosov Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with damping parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a “strip” of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N.: Entropy and the localization of eigenfunctions. Ann. of Math. (2) 168, 438–475 (2008)

    Article  MathSciNet  Google Scholar 

  2. Anantharaman N.: Spectral deviations for the damped wave equation. Geom. Func. Anal. 20, 593–626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anantharaman N., Nonnenmacher S.: Half delocalization of eigenfunctions of the Laplacian on an Anosov manifold. Ann. Inst. Fourier 55, 2465–2523 (2007)

    Article  MathSciNet  Google Scholar 

  4. Barreira L., Wolf C.: Dimension and ergodic decompositions for hyperbolic flows. DCDS 17, 201–212 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain J., Lindenstrauss E.: Entropy of quantum limits. Commun. Math. Phys. 233, 153–171 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bouzouina A., Robert D.: Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J. 111, 223–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burq, N.: Mesures semi-classiques et mesures de défaut (d’après P. Gérard, L. Tartar et al.). Astérisque 245, 167–196, Séminaire Bourbaki, (1996–1997)

  8. Burq N., Hitrik M.: Energy decay for damped wave equations on partially rectangular domains. Math. Research Lett. 14, 35–47 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Christianson, H.: Semiclassical nonconcentration near hyperbolic orbits. J. Funct. Anal. 246, 145–195 (2007); Corrigendum, J. Funct. Anal. 258, 1060–1065 (2009)

    Google Scholar 

  10. Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semiclassical Limit. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  11. Einsiedler, M., Lindenstrauss, E.: Diagonal actions on locally homogeneous spaces. In: Homogeneous flows, Moduli Spaces and Arithmetic. Clay Math. Proc. 10, Providence, RI: Amer. Math. Soc., 2010, pp. 155–241

  12. Helffer B., Martinez A., Robert D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hitrik M.: Eigenfrequencies and Expansions for Damped Wave Equations. Methods and Applications of Analysis 10, 543–564 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin, New York: Springer-Verlag, 1985

  15. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambbridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  16. Lebeau, G.: \’Equation des ondes amorties. In: Algebraic and Geometric Methods in Mathematical Physics (Kaciveli 1993), Math. Phys. Stud. 19, Dordrecht: Kluwer 1996, pp. 73–109

  17. Ledrappier F., Young L.S.: The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122, 509–539 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2) 163, 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nonnenmacher, S.: Anatomy of quantum chaotic eigenstates, Séminaire Poincaré XIV, “Le Chaos”, available at http://arxiv.org/abs/1005.5598v2 [math.DS], 2012

  20. Nonnenmacher, S.: Spectral theory of damped quantum chaotic systems. Actes des 38èmes Journées EDP, http://arxiv.org/abs/1109.0930v1 [math.ph], 2011

  21. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parry W.: Entropy and generators in ergodic theory. Benjamin, New York (1969)

    MATH  Google Scholar 

  23. Pesin Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. The University of Chicago Press, Chicago, IL (1998)

    MATH  Google Scholar 

  24. Pesin Y., Sadovskaya V.: Multifractal Analysis of Conformal Axiom A Flows. Commun. Math. Phys. 216, 277–312 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Rivière G.: Entropy of semiclassical measures in dimension 2. Duke Math. J. 155, 271–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivière, G.: Eigenmodes of the damped wave equation and small hyperbolic subsets, with an appendix by S. Nonnenmacher and G. Rivière. Ann. Inst. Fourier. (2012, to appear) http://arxiv.org/abs/1202.5123v1 [math.AP]

  27. Royer, J.: Analyse haute fréquence de l’équation de Helmholtz disipative. PhD Thesis, Université de Nantes, available at http://tel.archives-ouvertes.fr/tel-00578423/fr/ (2010)

  28. Ruelle D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9, 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sarnak P.: Recent progress on QUE. Bull. of the AMS 48, 211–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schenck E.: Energy decay for the damped wave equation under a pressure condition. Commun. Math. Phys. 300, 375–410 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Schenck E.: Exponential stabilization without geometric control. Math. Res. Lett. 18, 379–388 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Sjöstrand J.: Asymptotic distributions of eigenfrequencies for damped wave equations. Publ. RIMS 36, 573–611 (2000)

    Article  MATH  Google Scholar 

  33. Walters, P.: An introduction to ergodic theory. Berlin, New York: Springer-Verlag, 1982

  34. Zelditch, S.: Recent developments in mathematical quantum chaos. Current Developments in Mathematics, Somerville, MA: International Press of Boston, 2009, pp. 115–202

  35. Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics, Vol. 138, AMS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Rivière.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, G. Delocalization of Slowly Damped Eigenmodes on Anosov Manifolds. Commun. Math. Phys. 316, 555–593 (2012). https://doi.org/10.1007/s00220-012-1588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1588-7

Keywords

Navigation