Skip to main content
Log in

Wave-Breaking and Peakons for a Modified Camassa–Holm Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the formation of singularities and the existence of peaked traveling-wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. The equation is known to be integrable, and is shown to admit a single peaked soliton and multi-peakon solutions, of a different character than those of the Camassa-Holm equation. Singularities of the solutions can occur only in the form of wave-breaking, and a new wave-breaking mechanism for solutions with certain initial profiles is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber M.S., Camassa R., Holm D.D., Marsden J.E.: The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s. Lett. Math. Phys. 32, 137–151 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften 343, Berlin-Heidelberg: Springer-Verlag, 2011

  3. Beals R., Sattinger D.H., Szmigielski J.: Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boutet de Monvel A., Kostenko A., Shepelsky D., Teschl G.: Long-time asymptotics for the Camassa- Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunelli J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Cao C.S., Holm D.D., Titi E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Diff. Eqs. 16, 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou K.S., Qu C.Z.: Integrable equations arising from motions of plane curves I. Physica D 162, 9–33 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chung Y., Jones C.K.R.T., Schäfer T., Wayne C.E.: Ultra-short pulses in linear and nonlinear media. Nonlinearity 18, 1351–1374 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Constantin A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin A., Escher J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Constantin A., Gerdjikov V.S., Ivanov R.I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Problems 22, 2197–2207 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Constantin A., Ivanov R.I.: On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Constantin A., Kappeler T., Kolev B., Topalov P.: On geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31, 155–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Rati. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin A., McKean H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  19. Fisher M., Schiff J.: The Camassa Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Fokas, A.S., Olver, P.J., Rosenau, P.: A plethora of integrable bi-Hamiltonian equations. In: Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, Fokas, A.S., Gel’fand, I.M. (eds.) Progress in Nonlinear Differential Equations, Vol. 26, Birkhäuser, Boston, 1996, pp. 93–101

  21. Fu Y., Liu Y., Qu C.Z.: Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons. Math. Ann. 348, 415–448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fu, Y., Gui, G., Liu, Y., Qu, C.Z.: On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity. http://arxiv.org/abs/1108.5368v2 [math.AP], 2011

  23. Fuchssteiner B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981/1982)

    Google Scholar 

  25. Goldstein R.E., Petrich D.M.: The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys. Rev. Lett. 67, 3203–3206 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Górka P., Reyes E.G.: The modified Camassa–Holm equation. Int. Math. Res. Notes 2011, 2617–2649 (2011)

    MATH  Google Scholar 

  27. Gui G., Liu Y.: On the global existence and wave-breaking criteria for the two-component Camassa-Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guggenheimer, H.W.: Differential Geometry. New York: McGraw–Hill, 1963

  29. Hasimoto H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  ADS  MATH  Google Scholar 

  30. Holden H., Raynaud X.: A convergent numerical scheme for the Camassa-Holm equation based on multipeakons. Disc. Contn. Dyn. Syst. A. 14, 505–523 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Holm D.D., Ivanov R.I.: Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J. Phys. A 43, 492001 (2010)

    Article  MathSciNet  Google Scholar 

  32. Holm D.D., Ivanov R.I.: Two-component CH system: inverse scattering, peakons and geometry. Inverse Problems 27, 045013 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Holm D.D., Ó Náraigh L., Tronci C.: Singular solutions of a modified two-component Camassa-Holm equation. Phys. Rev. E 79, 016601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. Hone A.N., Lundmark H., Szmigielski J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation. Dyn. Part. Diff. Eq. 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Hone A.N., Wang J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002 (2008)

    Article  MathSciNet  Google Scholar 

  36. Johnson R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Langer J., Perline R.: Poisson geometry of the filament equation. J. Nonlin. Sci. 1, 71–93 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Li Y.A., Olver P.J.: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons. Discrete Cont. Dyn. Syst. 4, 419–432 (1998)

    MathSciNet  Google Scholar 

  40. Li Y.A., Olver P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Diff. Eq. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li Y.A., Olver P.J.: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. II. Complex analytic behavior and convergence to non-analytic solutions. Discrete Cont. Dyn. Syst. 4, 159–191 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Li, Y.A., Olver, P.J., Rosenau, P.: Non-analytic solutions of nonlinear wave models. In: Nonlinear Theory of Generalized Functions, Grosser, M., Hörmann, G., Kunzinger, M., Oberguggenberger, M., eds., Research Notes in Mathematics, Vol. 401, New York: Chapman and Hall/CRC, 1999, pp. 129–145

  43. Liu Y., Pelinovsky D., Sakovich A.: Wave breaking in the short-pulse equation. Dynamics of PDE 6, 291–310 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Misiolek G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Novikov V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    Article  MathSciNet  Google Scholar 

  46. Olver, P.J.: Applications of Lie Groups to Differential Equations. Second Edition, Graduate Texts in Mathematics, Vol. 107, New York: Springer–Verlag, 1993

  47. Olver P.J.: Invariant submanifold flows. J. Phys. A 41, 344017 (2008)

    Article  MathSciNet  Google Scholar 

  48. Olver P.J., Rosenau P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  49. Pinkall U.: Hamiltonian flows on the space of star-shaped curves. Results Math. 27, 328–332 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Qiao Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  51. Qiao Z., Li X.Q.: An integrable equation with nonsmooth solitons. Theor. Math. Phys. 267, 584–589 (2011)

    Article  Google Scholar 

  52. Reyes E.G.: Geometric integrability of the Camassa–Holm equation. Lett. Math. Phys. 59, 117–131 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sakovich A., Sakovich S.: Solitary wave solutions of the short pulse equation. J. Phys. A 39, L361–L367 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Schäfer T., Wayne C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196, 90–105 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Schiff J.: The Camassa–Holm equation: a loop group approach. Physica D 121, 24–43 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Tiǧlay F.: The periodic Cauchy problem of the modified Hunter-Saxton equation. J. Evol. Eq. 5, 509–527 (2005)

    Article  MathSciNet  Google Scholar 

  57. Tiǧlay F.: The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Notes 2011, 4633–4648 (2011)

    MathSciNet  Google Scholar 

  58. Wadati M., Konno K., Ichikawa Y.: New integrable nonlinear evolution equations. J. Phys. Soc. Japan 47, 1698–1700 (1979)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Olver.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, G., Liu, Y., Olver, P.J. et al. Wave-Breaking and Peakons for a Modified Camassa–Holm Equation. Commun. Math. Phys. 319, 731–759 (2013). https://doi.org/10.1007/s00220-012-1566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1566-0

Keywords

Navigation