Skip to main content
Log in

Diophantine Tori and Weyl Laws for Non-selfadjoint Operators in Dimension Two

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the distribution of eigenvalues for non-selfadjoint perturbations of selfadjoint semiclassical analytic pseudodifferential operators in dimension two, assuming that the classical flow of the unperturbed part is completely integrable. An asymptotic formula of Weyl type for the number of eigenvalues in a spectral band, bounded from above and from below by levels corresponding to Diophantine invariant Lagrangian tori, is established. The Weyl law is given in terms of the long time averages of the leading non-selfadjoint perturbation along the classical flow of the unperturbed part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N.: Spectral deviations for the damped wave equation. GAFA 20, 593–626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian systems. Geometry, topology, classification. Boca Raton, FL: Chapman & Hall/CRC, 2004

  3. Davies E.B.: Pseudospectra, the harmonic oscillator and complex resonances. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 585–599 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Duistermaat J.J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33, 687–706 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colin de Vèrdiere, Y.: La méthode de moyennisation en mécanique semi-classique. Journées “Équations aux Dérivées Partielles”, Saint-Jean-de-Monts, 1996

  6. Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit. Cambridge: Cambridge University Press, 1999

  7. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Vol. 18, Providence, RI: Amer. Math. Soc., 1969

  8. Guillemin V.: Band asymptotics in two dimensions. Adv. in Math. 42, 248–282 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillemin V., Stenzel M.: Grauert tubes and the homogeneous Monge-Ampère equations. J. Diff. Geom. 34, 561–570 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Hager M., Sjöstrand J.: Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342, 177–243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitrik M.: Boundary spectral behavior for semiclassical operators in dimension one. Int. Math. Res. Not. 64, 3417–3438 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hitrik M., Sjöstrand J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I. Ann. Henri Poincaré 5, 1–73 (2004)

    Article  MATH  Google Scholar 

  13. Hitrik M., Sjöstrand J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions II. Vanishing averages. Comm. Part. Diff. Eqs. 30, 1065–1106 (2005)

    Article  MATH  Google Scholar 

  14. Hitrik M., Sjöstrand J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions III a. One branching point. Canadian J. Math. 60, 572–657 (2008)

    Article  MATH  Google Scholar 

  15. Hitrik M., Sjöstrand J.: Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2. Ann. Sci. E.N.S. 41, 511–571 (2008)

    Google Scholar 

  16. Hitrik M., Sjöstrand J., Vũ Ngọc S.: Diophantine tori and spectral asymptotics for non-selfadjoint operators. Amer. J. Math. 129, 105–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmander, L.: The analysis of linear partial differential operators I. Berlin: Springer-Verlag, 1983

  18. Ivrii, V.: Microlocal analysis and precise spectral asymptotics. Berlin-Heidelberg-New York: Springer Verlag, 1998

  19. Lazutkin, V. F.: KAM theory and semiclassical approximations to eigenfunctions. With an Addendum by A. I. Shnirelman. Ergebnisse der Mathematik und Ihrer Grenzgebiete, Berlin: Springer Verlag, 1993

  20. Lebeau, G.: Équation des ondes amorties, In: Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Dordrecht: Kluwer Acad. Publ., 1996, pp. 73–109

  21. Lerner, N.: Metrics on the phase space and non-selfadjoint pseudo-differential operators. Pseudo-Differential Operators. Theory and Applications, 3. Basel: Birkhäuser Verlag, 2010

  22. Markus, A. S.: Introduction to the spectral theory of polynomial operator pencils. Translations of Mathematical Monographs 71, Providence RI: Amer. Math. Soc., 1998

  23. Markus A.S., Matsaev V.I.: Comparison theorems for spectra of linear operators and spectral asymptotics (in Russian). Trudy Moskov. Mat. Obsch. 45, 133–181 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Melin A., Sjöstrand J.: Determinats of pseudodifferential operators and complex deformations of phase space. Meth. Appl. Anal. 9, 177–238 (2002)

    MATH  Google Scholar 

  25. Melin A., Sjöstrand J.: Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2. Astérisque 284, 181–244 (2003)

    Google Scholar 

  26. Petkov V., Zworski M.: Semi-classical estimates on the scattering determinant. Ann. Henri Poincaré 2, 675–711 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Shnirelman, A.: On the asymptotic properties of the eigenfunctions in regions of chaotic motion. Addendum to [19]

  28. Sjöstrand J.: Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12, 85–130 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sjöstrand, J.: Singularités analytiques microlocales. Astérisque, 1982

  30. Sjöstrand, J.: Function spaces associated to global I-Lagrangian manifolds. In: Structure of solutions of differential equations, Katata/Kyoto, 1995, River Edge, NJ: World Sci. Publ., 1996

  31. Sjöstrand J.: Density of resonances for strictly convex analytic obstacles. Can. J. Math. 48, 397–447 (1996)

    Article  MATH  Google Scholar 

  32. Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Dordrecht: Kluwer Acad. Publ., 1997, pp. 377–437

  33. Sjöstrand J.: Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Math. Sci. 36, 573–611 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sjöstrand J.: Resonances for bottles and trace formulae. Math. Nachr. 221, 95–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sjöstrand, J.: Eigenvalue distributions and Weyl laws for semi-classical non-self-adjoint operators in 2 dimensions. To appear in volume in honor of J. J. Duistermaat, Progress in Mathematics, Birkhäuser

  36. Sjöstrand J., Zworski M.: Asymptotic distribution of resonances for convex obstacles. Acta Math. 183, 191–253 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Viola, J.: Resolvent estimates for non-selfadjoint operators with double characteristics. http://arxiv.org/abs/0910.2511v2 [math.AP], 2011, to appear J. London Math. Soc.

  38. Vodev G.: Sharp bounds on the number of scattering poles for perturbations of the Laplacian. Comm. Math. Phys. 146, 205–216 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Vũ Ngọc, S.: Systèmes intégrables semi-classiques: du local au global. Panoramas et Synthèses 22, Paris: Société Mathématique de France, 2006

  40. Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weyl H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zworski M.: Sharp polynomial bounds on the number of scattering poles. Duke Math. J. 59, 311–323 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hitrik.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitrik, M., Sjöstrand, J. Diophantine Tori and Weyl Laws for Non-selfadjoint Operators in Dimension Two. Commun. Math. Phys. 314, 373–417 (2012). https://doi.org/10.1007/s00220-012-1530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1530-z

Keywords

Navigation