Skip to main content
Log in

Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct an adiabatic invariant for a large 1–d lattice of particles, which is the so called Klein Gordon lattice. The time evolution of such a quantity is bounded by a stretched exponential as the perturbation parameters tend to zero. At variance with the results available in the literature, our result holds uniformly in the thermodynamic limit. The proof consists of two steps: first, one uses techniques of Hamiltonian perturbation theory to construct a formal adiabatic invariant; second, one uses probabilistic methods to show that, with large probability, the adiabatic invariant is approximately constant. As a corollary, we can give a bound from below to the relaxation time for the considered system, through estimates on the autocorrelation of the adiabatic invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuksin S.B.: Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000)

    Google Scholar 

  2. Bambusi D., Grébert B.: Birkhoff normal form for PDES with tame modulus. Duke Math. J. 135, 507–567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fröhlich J., Spencer T., Wayne C.E.: Localization in disordered, non–linear dynamical systems. J. Stat. Phys. 42, 247–274 (1986)

    Article  ADS  MATH  Google Scholar 

  4. Bambusi D., Giorgilli A.: Exponential stability of states close to resonance in infinite dimensional Hamiltonian Systems. J. Stat. Phys. 71, 569–606 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Giorgilli A., Galgani L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Cel. Mech. 17, 267–280 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Dobrushin R.L.: The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity. Theory Probab. Appl. 13, 197–224 (1968)

    Article  Google Scholar 

  7. Bogolyubov, N.N., Khatset, B.I., Petrina, D.Ya.: Mathematical Description of the Equilibrium State of Classical Systems on the Basis of the Canonical Ensemble Formalism. Ukr. J. Phys. 53, Special Issue, 168–184 (2008), available at http://www.ujp.bitp.kiev.ua/files/file/papers/53/special_issue/53SI34p.pdf; Russian original in Teor. Mat. Fiz., 1,2, 251–274 (1969)

  8. Dobrushin, R.L., Pechersky, E.A.: A criterion of the uniqueness of gibbsian fields in the non-compact case. In: Prokhorov, J.V., Ito, K. (eds.), Probability Theory and Mathematical Statistics, Springer: Berlin, 1983, pp. 97–110

  9. Fucito E., Marchesoni F., Marinari E., Parisi G., Peliti L., Ruffo S., Vulpiani A.: Approach to equilibrium in a chain of nonlinear oscillators. J. Phys.–Paris 43, 707–714 (1982)

    Article  MathSciNet  Google Scholar 

  10. Parisi G.: On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators. Europhys. Lett. 40, 357–362 (1997)

    Article  ADS  Google Scholar 

  11. Flach S.: Breathers on lattices with long range interaction. Phys. Rev. E 58, R4116–R4119 (1998)

    Article  ADS  Google Scholar 

  12. Bambusi D., Muraro D., Penati T.: Numerical studies on boundary effects on the FPU paradox. Phys. Lett. A 372, 2039–2042 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bambusi D., Carati A., Penati T.: Boundary effects on the dynamics of chains of coupled oscillators. Nonlinearity 22, 923–946 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Carati A., Galgani L., Santolini F.: On the energy transfer to small scales in a discrete model of one-dimensional turbulence. Chaos 19, 023123 (2009)

    Article  ADS  Google Scholar 

  15. Carati A.: An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit. J. Stat. Phys. 128, 1057–1077 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Cherry T.M.: On integrals developable about a singular point of a Hamiltonian system of differential equations. Proc. Camb. Phil. Soc. 22, 325–349 (1924)

    Article  ADS  MATH  Google Scholar 

  17. Giorgilli A.: Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point. Ann. Inst. Henri Poincaré 48, 423–439 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Ruelle D.: Probability estimates for continuous spin systems. Commun. Math. Phys. 50, 189–194 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. Green M.S.: Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. J. Chem. Phys 22, 398–413 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  20. Kubo R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple application to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  21. Liverani C.: On contact Anosov flows. Ann. Math. 159, 1275–1312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keller G., Liverani C.: Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension. Commun. Math. Phys. 262, 33–50 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Chernov, N., Markarian, R.: Chaotic billiards. Providence, RJ: Amer. Math. Soc., 2006

  24. Crawford J.D., Cary J.R.: Decay of correlations in a chaotic measure-preserving transformation. Physica D 6, 223–232 (1983)

    Article  ADS  Google Scholar 

  25. Nekhoroshev N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russ. Math. Surv. 32(6), 1–65 (1977)

    Article  MATH  Google Scholar 

  26. Giorgilli, A.: Studio con metodi perturbativi, Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carati.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carati, A., Maiocchi, A.M. Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit. Commun. Math. Phys. 314, 129–161 (2012). https://doi.org/10.1007/s00220-012-1522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1522-z

Keywords

Navigation