Skip to main content
Log in

Adiabatic Theorems for Generators of Contracting Evolutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop an adiabatic theory for generators of contracting evolution on Banach spaces. This provides a uniform framework for a host of adiabatic theorems ranging from unitary quantum evolutions through quantum evolutions of open systems generated by Lindbladians all the way to classically driven stochastic systems. In all these cases the adiabatic evolution approximates, to lowest order, the natural notion of parallel transport in the manifold of instantaneous stationary states. The dynamics in the manifold of instantaneous stationary states and transversal to it have distinct characteristics: The former is irreversible and the latter is transient in a sense that we explain. Both the gapped and gapless cases are considered. Some applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou Salem W.K.: On the quasi-static evolution of nonequilibrium steady states. Ann. H. Poincaré 8, 569–596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron J.E., Elgart A.: Adiabatic theorem without a gap condition. Commun. Math. Phys. 203, 445–463 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Avron J.E., Fraas M., Graf G.M., Grech P.: Landau-Zener tunneling for dephasing lindblad evolutions. Commun. Math. Phys. 305(3), 633–639 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Avron J.E., Fraas M., Graf G.M., Grech P.: Optimal time-schedule for adiabatic evolution. Phys. Rev. A 82, 040304 (2010)

    Article  ADS  Google Scholar 

  5. Avron J.E., Fraas M., Graf G.M., Kenneth O.: Geometry of quantum transport for dephasing lindbladians. New J. Phys. 13, 053042 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  6. Avron J.E., Seiler R., Yaffe L.G.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  ADS  MATH  Google Scholar 

  8. Berry M.V.: Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. A 429, 61–72 (1990)

    Article  ADS  Google Scholar 

  9. Berry M.V., Robbins J.M.: Chaotic classical and half-classical adiabatic reactions: geometric magnetism and deterministic friction. Proc. R. Soc. Lond. A 442, 659–672 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bornemann F.: Homogeneization in Time of Singularly Perturbed Mechanical Systems. Lecture Notes in Math. 1687. Springer, Berlin-Heidelberg (1998)

    Google Scholar 

  11. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer-Verlag, Berlin-Heidelberg (1979)

    MATH  Google Scholar 

  12. Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer-Verlag, Berlin-Heidelberg New York (1987)

    Google Scholar 

  13. Davies, E.B.: Quantum theory of open systems. London: Academic Press [Harcourt Brace Jovanovich Publishers], 1976

  14. Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hagedorn, G.A., Joye, A.: Recent results on non-adiabatic transitions in quantum mechanics. In Recent advances in differential equations and mathematical physics, Volume 412 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2006, pp. 183–198

  16. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Providence, R.I.: Amer. Math. Soc., 1997

  17. Horowitz J., Jarzynski C.: Exact formula for currents in strongly pumped diffusive systems. J. Stat. Phys. 136, 917–925 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Joye A.: General adiabatic evolution with a gap condition. Commun. Math. Phys. 275, 139–162 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kato T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan 5, 435–439 (1950)

    Article  ADS  Google Scholar 

  20. Kato T.: Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan 5(2), 208–234 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Berlin, Heidelberg: Springer, 1995

    Google Scholar 

  22. Krein, S.G.: Linear differential equations in Banach space. Providence, RI: Amer. Mathe. Soc., 1972

  23. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lumer G., Phillips R.S.: Dissipative operators in a Banach space. Pacific J. Math. 11, 679–698 (1961)

    MathSciNet  MATH  Google Scholar 

  25. Maes C., Netočný K., Thomas S.R.: General no-go condition for stochastic pumping. J. Chem. Phys. 132(23), 234116 (2010)

    Article  ADS  Google Scholar 

  26. Mandal D., Jarzynski C.: A proof by graphical construction of the no-pumping theorem of stochastic pumps. J. Stat. Mech. Th. Exp. 2011(10), P10006 (2011)

    Article  Google Scholar 

  27. Nenciu G.: Linear adiabatic theory. exponential estimates. Commun. Math. Phys. 152, 479–496 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Nenciu G., Rasche G.: On the adiabatic theorem for nonself-adjoint Hamiltonians. J. Phys. A. 25, 5741–5751 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  29. Parrondo J.M.R.: Reversible ratchets as Brownian particles in an adiabatically changing periodic potential. Phys. Rev. E. 57(6), 7297–7300 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  30. Paz J.P., Zurek W.H.: Quantum limit of decoherence: Environment induced superselection of energy eigenstates. Phys. Rev. Lett. 82, 5181 (1999)

    Article  ADS  Google Scholar 

  31. Rahav S., Horowitz J., Jarzynski Ch.: Directed flow in nonadiabatic stochastic pumps. Phys. Rev. Lett. 101(14), 140602 (2008)

    Article  ADS  Google Scholar 

  32. Reed, M., Simon, B.: Fourier Analysis and Self-Adjointness, Volume 2 of Methods of Modern Mathematical Physics. London: Academic Press, 1975

  33. Simon, B.: Trace ideals and their applications. Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1979

    Google Scholar 

  34. Stroock D.W.: An introduction to Markov processes, Volume 230 of Graduate Texts in Mathematics. Springer-Verlag, Berlin (2005)

    Google Scholar 

  35. Teufel S.: A note on the adiabatic theorem without gap condition. Lett. Math. Phys. 58(3), 255–261 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Grech.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avron, J.E., Fraas, M., Graf, G.M. et al. Adiabatic Theorems for Generators of Contracting Evolutions. Commun. Math. Phys. 314, 163–191 (2012). https://doi.org/10.1007/s00220-012-1504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1504-1

Keywords

Navigation