Skip to main content
Log in

On the Quasi-linear Elliptic PDE \({-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_k a_k \delta_{s_k}}\) in Physics and Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 11 October 2018

Abstract

It is shown that for each finite number N of Dirac measures \({\delta_{s_n}}\) supported at points \({s_n \in {\mathbb R}^3}\) with given amplitudes \({a_n \in {\mathbb R} \backslash\{0\}}\) there exists a unique real-valued function \({u \in C^{0, 1}({\mathbb R}^3)}\), vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form \({-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}\). Moreover, \({u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}\). The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| → ∞; (b) for any number N of integral mean curvatures assigned to locations \({s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}\) there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime \({{\mathbb R}^{1, 3}}\), having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| → ∞. No struts between the point singularities ever occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bartnik R.: Existence of maximal surfaces in asymptotically flat spacetimes. Commun. Math. Phys. 94, 155–175 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bartnik, R.: Maximal Surfaces and General Relativity “Miniconference on Geometry/Partial Differential Equations, 2” (Canberra, June 26–27, 1986) J. Hutchinson, L. Simon, ed., In: Proceedings of the Center for Mathematical Analysis, Australian National Univ. 12, 24–49 (1987)

  4. Bartnik R.: Regularity of variational maximal surfaces. Acta Math. 161, 145–181 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartnik R.: Isolated singular points of Lorentzian mean curvature hypersurfaces. Indiana Univ. Math. J. 38, 811–827 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartnik R., Simon L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131–152 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Born M.: Modified field equations with a finite radius of the electron. Nature 132, 282 (1933)

    Article  ADS  Google Scholar 

  8. Born M.: On the quantum theory of the electromagnetic field. Proc. Roy. Soc. A143, 410–437 (1934)

    ADS  Google Scholar 

  9. Born, M.: Atomic physics. 8th rev. ed., Glasgow: Blackie & Son Ltd., 1969

  10. Born M., Infeld L.: Foundation of the new field theory. Nature 132, 1004 (1933)

    Article  ADS  MATH  Google Scholar 

  11. Born M., Infeld L.: Foundation of the new field theory. Proc. Roy. Soc. A 144, 425–451 (1934)

    ADS  Google Scholar 

  12. Carley, H., Kiessling, M.K.-H.: Constructing graphs over \({{\mathbb R}^n}\) with small prescribed mean- curvature. http://arXiv.org/abs/1009.1435v3 [math.AP], 2010

  13. Cheng S.Y., Yau S.T.: Maximal spacelike hypersurfaces in the Lorentz–Minkowski spaces. Annals Math. 104, 407–419 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ecker K.: Area maximizing hypersurfaces in Minkowski space having an isolated singularity. Manuscr. Math. 56, 375–397 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferraro R.: Born-Infeld electrostatics in the complex plane. JHEP 1012, 028 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  16. Gibbons G.W.: Born-Infeld particles and Dirichlet p-branes. Nucl. Phys. B 514, 603–639 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Hoffmann, B.: On the spherically symmetric field in relativity Quart. J. Math. (Oxford), 3, 226–237 (1933); Part II, ibid. 4, 179–183 (1933); Part II, ibid. 6, 149–160 (1935)

  18. Hoppe J.: Some classical solutions of relativistic membrane equations in 4 spacetime dimensions. Phys. Lett. B 329, 10–14 (1994)

    MathSciNet  ADS  Google Scholar 

  19. Hoppe, J.: Conservation laws and formation of singularities in relativistic theories of extended objects. Eidgen. Tech. Hochschule report ETH-TH/95-7; http://arXiv.org/abs/hep-th/9503069v1, 1995

  20. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. 2nd ed., New York: Springer-Verlag, 1983

  21. Kiessling M.K.-H.: Electromagnetic field theory without divergence problems. 1. The Born legacy. J. Stat. Phys. 116, 1057–1122 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kiessling M.K.-H.: Electromagnetic field theory without divergence problems. 2. A least invasively quantized theory. J. Stat. Phys. 116, 1123–1159 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kiessling, M.K.-H.: Convergent perturbative power series solution of the stationary Maxwell–Born–Infeld field equations with regular sources. J. Math. Phys. 52, art. 022902, 16pp. (2011)

    Google Scholar 

  24. Kiessling, M.K.-H.: On the motion of point defects in relativistic fields. (40pp). In: Proceedings of the conference “Quantum field theory and gravity,” Regensburg 2010 Felix Finster, Olaf Müller, Marc Nardmann, Jürgen Tolksdorf, Eberhard Zeidler, orgs. and eds., Basel, Boston: Birkhäuser 2012

  25. Klyachin, A.A.: Solvability of the Dirichlet problem for the maximal surface equation with singularities in unbounded domains, (Russian) Dokl. Russ. Akad. Nauk 342, 161–164; English transl. in Dokl. Math. 51, 340–342 (1995)

  26. Klyachin, A.A.: Description of a set of entire solutions with singularities of the equation of maximal surfaces, (Russian) Mat. Sb. 194, 83–104 (2003); English transl. in Sb. Math. 194, 1035–1054 (2003)

  27. Klyachin, A.A., Miklyukov, V.M.: Existence of solutions with singularities for the maximal surface equation in Minkowski space, (Russian) Mat. Sb., 184, 103–124; English transl. in Russ. Acad. Sci. Sb. Math. 80, 87–104 (1995)

  28. Kobayashi O.: Maximal surfaces in the 3-dimensional Minkowski space \({\mathbb{L}^3}\). Tokyo J. Math. 6, 297–309 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith P.D.: Nonlinear Hodge theory on punctured Riemannian manifolds. Ind. Univ. Math. J. 31, 553–577 (1982)

    Article  ADS  MATH  Google Scholar 

  30. Pryce M.H.L.: The two-dimensional electrostatic solutions of Born’s new field equations. Proc. Camb. Phil. Soc. 31, 50–68 (1935)

    Article  ADS  Google Scholar 

  31. Pryce M.H.L.: On a uniqueness theorem. Proc. Camb. Phil. Soc. 31, 625–628 (1935)

    Article  ADS  Google Scholar 

  32. Tahvildar-Zadeh A.S.: On the static spacetime of a single point charge. Rev. Math. Phys. 23, 309–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Treibergs A.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66, 39–56 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Weinstein G.: N-black hole stationary and axially symmetric solutions of the Einstein–Maxwell equations. Commun. Partial Diff. Eq. 21, 1389–1430 (1982)

    Article  Google Scholar 

  35. Yang Y.: Classical solutions of the Born–Infeld theory. Proc. Roy. Soc. London A 456, 615–640 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K.-H. Kiessling.

Additional information

Communicated by P. T. Chruściel

Copyright © 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.KH. On the Quasi-linear Elliptic PDE \({-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_k a_k \delta_{s_k}}\) in Physics and Geometry. Commun. Math. Phys. 314, 509–523 (2012). https://doi.org/10.1007/s00220-012-1502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1502-3

Keywords

Navigation