Skip to main content
Log in

Exponential Convergence to the Maxwell Distribution for Some Class of Boltzmann Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a class of nonlinear Boltzmann equations describing return to thermal equilibrium in a gas of colliding particles suspended in a thermal medium. We study solutions in the space \({L^{1}(\Gamma^{(1)},d\lambda),}\) where \({\Gamma^{(1)}=\mathbb{R}^{3} \times \mathbb{T}^3}\) is the one-particle phase space and \({d\lambda= d^3 v d^3 x}\) is the Liouville measure on Γ(1). Special solutions of these equations, called “Maxwellians,” are spatially homogenous static Maxwell velocity distributions at the temperature of the medium. We prove that, for dilute gases, the solutions corresponding to smooth initial conditions in a weighted L 1-space converge to a Maxwellian in \({L^{1}(\Gamma^{(1)},d\lambda)}\) , exponentially fast in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd L.: Stability in L 1 for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 103(2), 151–167 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobylev A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5-6), 1183–1214 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bobylev A.V., Gamba I.M., Panferov V.A.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5-6), 1651–1682 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bodmer R.: Zur Boltzmanngleichung. Commun. Math. Phys. 30, 303–334 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  5. Carleman, T.: Matematicheskie zadachi kineticheskoi teorii gazov. Translated from the French by V.-K. I. Karabegov; edited by N. N. Bogolyubov. Biblioteka Sbornika “Matematika”. Moscow: Izdat. Inostr. Lit., 1960

  6. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Volume 106 of Applied Mathematical Sciences. New York: Springer-Verlag, 1994

  7. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II. Wiley Classics Library. New York: John Wiley & Sons Inc., 1989, Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication

  8. Davies, E.B.: Quantum theory of open systems. London: Academic Press [Harcourt Brace Jovanovich Publishers], 1976

  9. Desvillettes L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Rat. Mech. Anal. 123(4), 387–404 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2) 130(2), 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős L., Yau H.-T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Comm. Pure Appl. Math. 53(6), 667–735 (2000)

    Article  MathSciNet  Google Scholar 

  13. Glassey, R.T.: The Cauchy problem in kinetic theory. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1996

  14. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I. New York: Academic Press, 1963, pp. 26–59

  15. Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation with long-range interactions. Proc. Natl. Acad. Sci. USA 107(13), 5744–5749 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Guo Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Lanford, O.E. III.: Time evolution of large classical systems. In: Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38. Berlin: Springer, 1975, pp. 1–111

  19. Lu X.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228(2), 409–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. McOwen, R.: Partial Differential Equations: Methods and Applications. Upper Saddle River, NJ: Prentice Hall, 2002

  21. Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Mokhtar-Kharroubi M., Sbihi M.: Critical spectrum and spectral mapping theorems in transport theory. Semigroup Forum 70(3), 406–435 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mokhtar-Kharroubi M., Sbihi M.: Spectral mapping theorems for neutron transport, L 1-theory. Semigroup Forum 72(2), 249–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mouhot C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261(3), 629–672 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173(2), 169–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York: Academic Press, 1972

  27. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wennberg B.: Stability and exponential convergence in L p for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20(8), 935–964 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wennberg B.: On moments and uniqueness for solutions to the space homogeneous Boltzmann equation. Transport Theory Stat. Phys. 23(4), 533–539 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Wennberg B.: Regularity in the Boltzmann equation and the Radon transform. Comm. Part. Diff. Eqs. 19(11-12), 2057–2074 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fröhlich.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Gang, Z. Exponential Convergence to the Maxwell Distribution for Some Class of Boltzmann Equations. Commun. Math. Phys. 314, 525–554 (2012). https://doi.org/10.1007/s00220-012-1499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1499-7

Keywords

Navigation