Skip to main content
Log in

On Centralizer Algebras for Spin Representations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a presentation of the centralizer algebras for tensor products of spinor representations of quantum groups via generators and relations. In the even-dimensional case, this can be described in terms of non-standard q-deformations of orthogonal Lie algebras; in the odd-dimensional case only a certain subalgebra will appear. In the classical case q = 1 the relations boil down to Lie algebra relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer F.L.: Zur Theorie der Spingruppen. Math. Ann. 128, 228–256 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benkart G., Stroomer J.: Tableaux and insertion schemes for spinor representations of the orthogonal Lie algebra so(2r + 1, C). J. Combin. Theory Ser. A 57(2), 211–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. AMS 313, 249–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Groupes et algèbres de Lie. Ch. Paris: 3,4,5, Masson, 1971

  5. Brauer R.: On algebras which are connected with the semisimple continuous groups. Ann. of Math. 63, 854–872 (1937)

    MathSciNet  Google Scholar 

  6. Ding, J.T., Frenkel, I.B.: Spinor and oscillator representations of quantum groups. In: Lie theory and geometry, on, Progr. Math., 123, Boston, MA: Birkhuser Boston, 1994, pp. 127–165

  7. Gavrilik A.M., Klimyk A.U.: q-deformed orthogonal and pseudo-orthogonal algebras and their representations. Lett. Math. Phys. 21(3), 215–220 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Hasegawa K.: Spin module versions of Weyl’s reciprocity theorem for classical Kac-Moody Lie algebras—an application to branching rule duality. Publ. Res. Inst. Math. Sci. 25(5), 741–828 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayashi T.: q-analogues of Clifford and Weyl algebras - spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990)

    Article  ADS  Google Scholar 

  10. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Berlin-Heidelberg-New York: Springer Verlag, 1978

  11. Iorgov, N.Z., Klimyk, A.U.: Classification theorem on irreducible representations of the q-deformed algebra \({U_q'({\rm so}_n)}\) . Int. J. Math. Math. Sci. (2), 225–262 (2005)

  12. Jantzen, J.C.: Lectures on quantum groups. Graduate Studies in Mathematics, 6. Providence. RI: Amer. Math. Soc., 1996

  13. Jones V.F.R.: Index for subfactors. Invent. Math 72, 1–25 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kac V.: Infinite dimensional Lie algebras 3rd edition. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  15. Kassel Ch.: Quantum groups. Springer, Berlin-Heidelberg-New York (1995)

    Book  MATH  Google Scholar 

  16. Kazhdan D., Wenzl H.: Reconstructing monoidal categories. Adv. in Soviet Math. 16, 111–136 (1993)

    MathSciNet  Google Scholar 

  17. Lehrer G.I., Zhang H., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Algebra 306, 138–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Letzter G.: Subalgebras which appear in quantum Iwasawa decompositions. Can. J. Math. 49(6), 1206–1223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lusztig G.: Introduction to quantum groups. Basel-Boston, Birkhäuser (1993)

    MATH  Google Scholar 

  20. Noumi, M., Sugitani, T.: Quantum symmetric spaces and related q-orthogonal polynomials. In: Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), River, Edge, NJ: World Sci. Publishing, 1995, pp. 28–40

  21. Orellana R., Wenzl H.: q-centralizer algebras for spin groups. J. Algebra 253(2), 237–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ram A., Wenzl H.: Matrix units for centralizer algebras. J. Algebra. 102, 378–395 (1992)

    Article  MathSciNet  Google Scholar 

  23. Rowell, E., Wang, Zh.: Localization of unitary braid group representations, http://aixiv.org/abs/1009.0241v2 [math.RT], 2010

  24. Sunder V.S.: A model for AF algebras and a representation of the Jones projections. J. Op. Theory 18(2), 289–301 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Tuba I., Wenzl H.: Representations of the braid groups B 3 and of \({SL(2, \mathbb {Z})}\) . Pacific. J. 197(2), 491–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tuba I., Wenzl H.: On braided tensor categories of type BCD. J. Reine Angew. Math. 581, 31–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Turaev V.: Quantum invariants of knots and 3-manifolds. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  28. Wenzl H.: Quantum groups and subfactors of Lie type B, C and D. Commun. Math. Phys. 133, 383–433 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Wenzl H.: Braids and invariants of 3-manifolds. Invent. Math. 114, 235–275 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Wenzl, H.: On tensor categories of Lie type E N , N ≠ 9, preprint

  31. Weyl H.: The classical groups. Princeton University Press, Princeton, NJ (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Wenzl.

Additional information

Communicated by Y. Kawahigashi

Supported in part by NSF grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzl, H. On Centralizer Algebras for Spin Representations. Commun. Math. Phys. 314, 243–263 (2012). https://doi.org/10.1007/s00220-012-1494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1494-z

Keywords

Navigation