Skip to main content
Log in

Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the Batalin-Vilkovisky formalism for classical field theory on generic globally hyperbolic spacetimes. A crucial aspect of our treatment is the incorporation of the principle of local covariance which amounts to formulate the theory without reference to a distinguished spacetime. In particular, this allows a homological construction of the Poisson algebra of observables in classical gravity. Our methods heavily rely on the differential geometry of configuration spaces of classical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert C., Bleile B., Fröhlich J.: Batalin-Vilkovisky integrals in finite dimensions. J. Math. Phy. 51(1), 31 (2010)

    Article  Google Scholar 

  2. Fredenhagen, K., Bär, Ch.: Quantum field theory on curved spacetimes. Lecture Notes in Physics, Vol. 786, Berlin-Heidelberg: Springer, 2009

  3. Bär, Ch., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. ESI Lectures in Mathematics and Physics, Züridi: Eur. Math. Soc. Publishing House, 2007

  4. Barnich G., Henneaux M., Hurth T., Skenderis K.: Cohomological analysis of gauge-fixed gauge theories. Phys. Lett. B 492, 376 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in gauge theories. Phys. Rept. 338, 439 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. 69, 309 (1977)

    Google Scholar 

  7. Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. 102, 27 (1981)

    MathSciNet  Google Scholar 

  8. Batalin I.A., Vilkovisky G.A.: Feynman rules for reducible Gauge theories. Phys. Lett. B 120, 166 (1983)

    Article  ADS  Google Scholar 

  9. Batalin I.A., Vilkovisky G.A.: Quantization of Gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  10. Becchi C., Rouet A., Stora R.: Renormalization of the abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  11. Becchi C., Rouet A., Stora R.: Renormalization of Gauge theories. Ann. Phys. 98, 287 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bonora L., Cotta-Ramusino P.: Some remarks on BRS transformations, anomalies and the cohomoloy of the Lie algebra of the group of Gauge transformations. Commun. Math. Phys. 87, 589–603 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bourbaki, N.: Topological vector spaces. Ch. 1-5, Berlin-Heidelberg-New York: Springer-Verlag, 2003

  14. Brunetti, R., Fredenhagen, K.: Towards a Background Independent Formulation of Perturbative Quantum Gravity. In: Proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul - 1 Aug 2005. In: Fauser, B. (ed.) et al.: Quantum gravity, pp. 151–159

  15. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    Article  ADS  MATH  Google Scholar 

  16. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle - A new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  17. Brunetti R., Dütsch M., Fredenhagen K.: Perturbative Algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Brunetti, R., Fredenhagen, K., Lauridsen Ribeiro, P.: Algebraic structure of classical field theory I. The case of real scalar field. To appear

  19. Chacón R.V., Friedman N.: Additive functionals. Arch. Rat. Mech. Anal. 18, 230–240 (1965)

    Article  MATH  Google Scholar 

  20. Cariñena J.F., Crampin M., Ibort L.A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991)

    Article  MATH  Google Scholar 

  21. Chevalley C., Eilenberg S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  22. Costello, K.: Renormalization and effective field theory. Math. Sorv. and Monographs 170, Providence, RI: Amer. Math. Soc., 2011

  23. Costello, K.: Factorization algebras in perturbative quantum field theory. http://www.math.northwestern.edu/~costello/factorization_public.html

  24. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Dubinsky, E.: The structure of nuclear Fréchet spaces. Lecture Notes in Mathematics 720, Berlin- Heidelberg-New York: Springer, 1979

  26. Dütsch, M., Fredenhagen, K.: Perturbative renormalization and BRST. In: Encyclopedia of Mathematical Physics, Amsterdam: Elsevier, 2006

  27. Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. In: Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena June 20–25 2000, Fields Inst. Commun. 30, 2001

  28. Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16(10), 1291–1348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dütsch M., Fredenhagen K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003)

    Article  ADS  MATH  Google Scholar 

  30. Eisenbud, D.: Commutative Algebra with a view toward algebraic geometry. New York: Springer Verlag, 1995

  31. Fewster Ch.J.: Quantum energy inequalities and local covariance II: categorical formulation. Gen. Rel. Grav. 39, 1855–1890 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Friedrich H.: Is general relativity “essentially understood”?. Ann. Phys. (Leipzig) 15, 84–108 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Fredenhagen, K.: Locally Covariant Quantum Field Theory. In: Proceedings of the XIVt h International Congress on Mathematical Physics, Lisbon 2003, River Edge, NJ: World Scientific, 2003

  34. Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, Chichester: J. Wiley, 1988

  35. Fulp, R., Lada, T., Stasheff, J.: Noether’s variational theorem II and the BV formalism. In: Proceedings of the 2002 Winter School “Geometry and Physics”, Srni, Czech Republic, in Suppl. Rend. Circ. Mat. Palemo, II Ser. 71, 115-126 (2003)

  36. Glöckner H.: Lie group structures on quotient groups and universal complexifications for infinite-Dimensional Lie groups. J. Funct. Anal. 194(2), 347–409 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Glöckner, H.: Patched locally convex spaces, almost local mappings and diffeomorphism groups of non-compact manifolds. manuscript TU Darmstadt, 2002

  38. Glöckner H.: Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories. J. Funct. Anal. 245, 19–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gotay, M.J.: A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations. In: Francaviglia, M. (ed.), Mechanics, Analysis and Geometry: 200 Years after Lagrange, Amsterdam: North-Holland, 1991, pp. 203–235, available at the author’s homepage (http://www.pims.math.ca/~gotay/Multi_I.pdf)

  40. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  41. Henneaux, M., Teitelboim, C.: Quantization of gauge systems. Princeton: Princeton Univ. Press, 1992, p. 520

  42. Henneaux, M.: Lectures On The Antifield - BRST Formalism For Gauge Theories. Lectures given at 20t h GIFT Int. Seminar on Theoretical Physics, Jaca, Spain, Jun 5–9, 1989, and at CECS, Santiago, Chile, June/July 1989, Nucl. Phys. B (Proc. Suppl.) A18, 1990, p. 47

  43. Hilton, P.J., Stammbach, U.: A course in homological algebra. New York: Springer Verlag, 1997

  44. Hogbe-Nlend, H.: Bornologies and functional analysis. Mathematics Studies 26, Amsterdam-New York-Oxford: North-Holland, 1977

  45. Hogbe-Nlend, H., Moscatelli, V.B.: Nuclear and conuclear spaces: introductory courses on nuclear and conuclear spaces in the light of the duality “topology-bornology”. North-Holland Mathematics Studies 52, Ansterdam: North Holland, 1981

  46. Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hörmander, L.: The analysis of linear partial differential operators I: Distribution theory and Fourier analysis. Berlin-Heidelberg-NewYork: Springer, 2003

  48. Ichinose Sh.: BRS symmetry on background-field, Kallosh theorem and renormalization. Nucl. Phys. B 395, 433–453 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  49. Jarchow, H.: Topological vector spaces. Stuttgart: B. G. Teubner, 1981

  50. Kanatchikov I.V.: On field theoretic generalizations of a Poisson algebra. Rep. Math. Phys. 40, 225 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Kanatchikov I.V.: Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41, 49 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Kijowski J.: A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys. 30, 99–128 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  53. Kolar, I., Michor, P., Slovak, J.: Natural operations in differential geometry. Berlin-Heidelberg: Springer-Verlag, 1993

  54. Komatsu H.: Ultradistributions. III. Vector-valued ultradistributions and the theory of kernels. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 653–717 (1982)

    MathSciNet  MATH  Google Scholar 

  55. Köthe, G.: Topological vector spaces. Berlin-Heidelberg-NewYork: Springer, 1969

  56. Kriegl, A., Michor, P.: Convenient setting of global analysis. Mathematical Surveys and Monographs 53, Providence, RI: Amer. Math. Soc., 1997

  57. Marolf D.: The Generalized Peierls bracket. Ann. Phys. (N.Y.) 236, 392–412 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Michor, P.: Manifolds of Differentiable Mappings. Nantwich, OK: Shiva Publ., 1980

  59. Nakanishi N.: Indefinite-metric quantum field theory of general relativity. Prog. Theor. Phys. 59, 972 (1978)

    Article  ADS  MATH  Google Scholar 

  60. Nakanishi, N., Ojima, I.: Covariant operator formalism of gauge theories and quantum gravity. World Scientific Lecture Notes in Physics 27, Singapore: World Scientific, 1990

  61. Neeb, K.-H.: Monastir Lecture Notes on Infinite-Dimensional Lie Groups. http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf

  62. Neeb, K.-H.: Current groups for non-compact manifolds and their central extensions. In: Infinite dimensional groups and manifolds, Edited by T. Wurzbacher, IRMA Lectures in Mathematics and Theoretical Physics 5, Berlin: de Gruyter Verlag, 2004, pp. 109–183

  63. Nishijima K., Okawa M.: The Becchi-Rouet-Stora transformation for the gravitational field. Prog. Theo. Phys. 60, 272–283 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Peierls R.E.: The commutation laws of relativistic field theory. Proc. Roy. Soc. London A 214, 143–157 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Pietsch, A.: Nuclear locally convex vector spaces. Berlin-Heidelberg-New York: Springer-Verlag, 1972

  66. Rao, M.M.: Local Functionals. In: D. Kolzow (ed.), Measure Theory, Oberwolfach 1979. Lecture Notes in Mathematics 794, Berlin-Heidelberg-New York: Springer-Verlag, 1980, pp. 484–496

  67. Rejzner K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory, Ph.D. thesis, DESY-THESIS-2011-041, Hamburg. arXiv:math-ph/1110.5130

  69. Richter, B.: Homological perturbation theory and the existence of the BRST differential. http://www.math.uni-hamburg.de/home/richter/hpthandout.pdf, 2008

  70. Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sardanashvily G.: Cohomology of the variational complex in BRST theory. Mod. Phys. Lett. A 16, 1531 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Sardanashvily G.: Classical field theory. Advanced mathematical formulation. Int. J. Geom. Methods Mod. Phys. 5, 1163–1189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Advanced classical field theory. River Edge, NJ: World Scientific, 2009

  74. Schreiber, U.: On Lie ∞-modules and the BV complex, http://www.math.uni-hamburg.de/home/schreiber/chain.pdf, 2008

  75. Schwartz, L.: Théorie des distributions. Paris: Hermann, 1950

  76. Schwartz L.: Théorie des distributions á valeurs vectorielles. I. Annales de l’institut Fourier 7, 1–141 (1957)

    Article  MATH  Google Scholar 

  77. Schwartz L.: Théorie des distributions á valeurs vectorielles. I. Annales de l’institut Fourier 8, 1–209 (1958)

    Article  MATH  Google Scholar 

  78. Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. Proceedings of the Conference Secondary Calculus and Cohomological Physics, Moscow, August 24-31, 1997, http://arXiv.org/abs/hep-th/9712157v1, 1997

  79. Vogt, D.: An example of a nuclear Fréchet space without the bounded approximation property. Math. Z. 182, 265–267 (1983)

    Google Scholar 

  80. Wald, R.M.: General relativity. Chicago IL: The University of Chicago Press, 1984

  81. Weibel, Ch.A.: An introduction to homological algebra. Cambridge: Cambridge University Press, 1994

  82. Weise, J.-Ch.: On the algebraic formulation of classical general relativity. Diploma thesis under the supervision of K. Fredenhagen, Hamburg, January 2011

  83. Wockel, Ch.: Infinite-Dimensional Lie Theory for Gauge Groups, Dip. Math. dissertation, http://www.math.uni-hamburg.de/home/wockel/data/diss.pdf, 2006

  84. Zinn-Justin, J.: Renormalization of Gauge Theories. In: Trends in Elementary Particle Theory. edited by H. Rollnik, K. Dietz, Lecture Notes in Physics 37, Berlin: Springer-Verlag, 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fredenhagen.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredenhagen, K., Rejzner, K. Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory. Commun. Math. Phys. 314, 93–127 (2012). https://doi.org/10.1007/s00220-012-1487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1487-y

Keywords

Navigation