Skip to main content
Log in

Conformal Geometry of the Supercotangent and Spinor Bundles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the actions of local conformal vector fields \({X \in {\rm conf}(M,g)}\) on the spinor bundle of (M, g) and on its classical counterpart: the supercotangent bundle \({\mathcal{M}}\) of (M, g). We first deal with the classical framework and determine the Hamiltonian lift of conf (M, g) to \({\mathcal{M}}\) . We then perform the geometric quantization of the supercotangent bundle of (M, g), which constructs the spinor bundle as the quantum representation space. The Kosmann Lie derivative of spinors is obtained by quantization of the comoment map.

The quantum and classical actions of conf (M, g) turn, respectively, the space of differential operators acting on spinor densities and the space of their symbols into conf (M, g)-modules. They are filtered and admit a common associated graded module. In the conformally flat case, the latter helps us determine the conformal invariants of both conf (M, g)-modules, in particular the conformally odd powers of the Dirac operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaya, V., Guerrero, J., Marmo, G.: Quantization on a Lie group: higher-order polarizations. In: Symmetries in science, X (Bregenz, 1997). New York: Plenum, 1998, pp. 1–36

  2. Barducci A., Casalbuoni R., Lusanna L.: Classical spinning particles interacting with external gravitational fields. Nucl. Phys. B 124, 521–538 (1977)

    Article  ADS  Google Scholar 

  3. Berezin F.A., Marinov M.S.: Particle spin dynamics as the grassmann variant of classical mechanics. Ann. of Phys. 104, 336–362 (1977)

    Article  ADS  MATH  Google Scholar 

  4. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Editions. Berlin: Springer-Verlag, 2004. (Corrected reprint of the 1992 original)

  5. Blattner, R.J.: Quantization and representation theory. In: Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972). Providence, RI: Amer. Math. Soc., 1973, pp. 147–165

  6. Bordemann, M.: The deformation quantization of certain super-Poisson brackets and BRST cohomology. In Conférence Moshé Flato 1999, Vol. II (Dijon), Volume 22 of Math. Phys. Stud. Dordrecht: Kluwer Acad. Publ., 2000, pp. 45–68

  7. Bourguignon J.-P., Gauduchon P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Branson T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans. Amer. Math. Soc. 347(10), 3671–3742 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Branson T.P.: Second order conformal covariants. Proc. Amer. Math. Soc. 126(4), 1031–1042 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cap A., Gover A.R., Soucek V.: Conformally invariant operators via curved casimirs: Examples. Pure Appl. Math. Q. 6(3), 693–714 (2010)

    MathSciNet  MATH  Google Scholar 

  11. DeWitt, B.: Supermanifolds. Cambridge Monographs on Mathematical Physics. Second edn. Cambridge: Cambridge University Press, 1992

  12. Duval C., Lecomte P.B.A, Ovsienko V.Yu.: Conformally equivariant quantization: existence and uniqueness. Ann. Inst. Fourier (Grenoble) 49(6), 1999–2029 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eastwood M.G.: Higher symmetries of the Laplacian. Ann. of Math. (2) 161(3), 1645–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eastwood, M.G., Leistner, T.: Higher symmetries of the square of the Laplacian. In Symmetries and overdetermined systems of partial differential equations, Volume 144 of IMA Vol. Math. Appl. New York: Springer, 2008, pp. 319–338

  15. Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109(2), 207–228 (1987). Erratum Commun. Math. Phys. 144(1), 213 (1992)

    Google Scholar 

  16. Eelbode D., Souček V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33(13), 1558–1570 (2010)

    MathSciNet  MATH  Google Scholar 

  17. El Gradechi A.M., Nieto L.M.: Supercoherent states, super-Kähler geometry and geometric quantization. Commun. Math. Phys. 175(3), 521–563 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ferrara S., Lledó M.A.: Some aspects of deformations of supersymmetric field theories. J. High Energy Phys. 05, 008 (2000)

    Article  ADS  Google Scholar 

  19. Getzler E.: Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem. Commun. Math. Phys. 92(2), 163–178 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Godina M., Matteucci P.: The Lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2(2), 159–188 (2005)

    Article  MathSciNet  Google Scholar 

  21. Gover A.R., Peterson L.J.: Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus. Commun. Math. Phys. 235(2), 339–378 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Graham C.R., Jenne R., Mason L.J., Sparling G.A.J.: Conformally invariant powers of the Laplacian. I. Existence. J. London Math. Soc. (2) 46(3), 557–565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hitchin N.: Harmonic spinors. Adv. in Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khudaverdian O.M.: Geometry of superspace with even and odd brackets. J. Math. Phys. 32(7), 1934–1937 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Kosmann Y.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91(4), 317–395 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Kostant, B.: Quantization and unitary representations. I. Prequantization. In: Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170. Berlin: Springer, 1970, pp. 87–208

  27. Kostant, B.: Symplectic spinors. In: Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973). London: Academic Press, 1974, pp. 139–152

  28. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975). Lecture Notes in Math., Vol. 570. Berlin: Springer, 1977, pp. 177–306

  29. Lawson, H.B., Michelsohn, M.-L.: Spin geometry, Volume 38 of Princeton Mathematical Series. Princeton, NJ: Princeton University Press, 1989

  30. Leĭtes D.A.: New Lie superalgebras, and mechanics. Dokl. Akad. Nauk. SSSR 236(4), 804–807 (1977)

    MathSciNet  Google Scholar 

  31. Leĭtes, D.A.: Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk. 35(1(211)), 3–57, 255, (1980)

  32. Mathonet P., Radoux F.: On natural and conformally equivariant quantizations. J. Lond. Math. Soc., II. Ser. 80(1), 256–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Michel, J.-Ph.: Quantification conformément équivariante des fibrés supercotangents. PhD thesis, Université Aix-Marseille II, 2009. available at http://tel.archives-ouvertes.fr/tel-00425576_v1, 2009

  34. Michel, J.-Ph.: Conformally equivariant quantization - a complete classification. SIGMA, 8, Paper 022 (2012)

  35. Musson, I.M., Pinczon, G., Ushirobira, R.: Hochschild cohomology and deformations of Clifford-Weyl algebras. Sigma, 5, Paper 028 (2009)

    Google Scholar 

  36. Nurowski P., Trautman A.: Robinson manifolds as the Lorentzian analogs of Hermite manifolds. Diff. Geom. Appl. 17(2–3), 175–195 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ovsienko V.Yu., Redou P.: Generalized transvectants-Rankin-Cohen brackets. Lett. Math. Phys. 63(1), 19–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Palese, M., Winterroth, E.: Noether identities in Einstein-Dirac theory and the Lie derivative of spinor fields. In: Differential geometry and its applications. Hackensack, NJ: World Sci. Publ., 2008, pp. 643–653

  39. Paneitz, S.M.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary). SIGMA, 4, Paper 036 (2008)

    Google Scholar 

  40. Papapetrou A.: Spinning test-particles in general relativity. I. Proc. Roy. Soc. London. Ser. A. 209, 248–258 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Radoux F.: An explicit formula for the natural and conformally invariant quantization. Lett. Math. Phys. 89(3), 249–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ravndal F.: Supersymmetric Dirac particles in external fields. Phys. Rev. D (3) 21(10), 2823–2832 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  43. Rothstein, M.: The structure of supersymplectic supermanifolds. In Differential geometric methods in theoretical physics (Rapallo, 1990), Volume 375 of Lecture Notes in Phys. Berlin: Springer, 1991, pp. 331–343

  44. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson brackets and beyond (Manchester, 2001), Volume 315 of Contemp. Math. Providence, RI: Amer. Math. Soc., 2002, pp. 169–185

  45. Silhan, J.: Conformally invariant quantization - towards complete classification. http://arxiv.org/abs/0903.4798v1 [math.DG], 2009

  46. Silhan J., Silhan J., Silhan J.: Higher symmetries of the conformal powers of the laplacian on conformally flat manifolds. J. Math. Phys. 53(3), 26 (2012)

    Google Scholar 

  47. Souriau, J.-M.: Structure des systèmes dynamiques. Maitrises de mathématiques. Paris: Dunod, 1970 (© 1969)

  48. Sparling, G.A.J., Holland, J.E.: Conformally invariant powers of the ambient Dirac operator. http://arxiv.org/abs/math/0112033v2 [math.DG], 2001

  49. Trautman A.: Connections and the Dirac operator on spinor bundles. J. Geom. Phys. 58, 238–252 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Tuynman G.M.: Geometric quantization of the BRST charge. Commun. Math. Phys. 150(2), 237–265 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Tuynman, G.M.: Supermanifolds and supergroups, Volume 570 of Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers, 2004

  52. Voronov, F.F.: Quantization on supermanifolds and an analytic proof of the Atiyah-Singer index theorem. In: Current problems in mathematics. Newest results, Vol. 38 (Russian), Itogi Nauki i Tekhniki, 186. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1990, pp. 3–118. Translated in J. Soviet Math. 64(4), 993–1069 (1993)

  53. Weyl, H.: The classical groups. Their invariants and representations. Princeton Landmarks in Mathematics. Princeton, NJ: Princeton University Press, 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Michel.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, JP. Conformal Geometry of the Supercotangent and Spinor Bundles. Commun. Math. Phys. 312, 303–336 (2012). https://doi.org/10.1007/s00220-012-1475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1475-2

Keywords

Navigation