Skip to main content
Log in

The W N Minimal Model Classification

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We first rigourously establish, for any N ≥ 2, that the toroidal modular invariant partition functions for the (not necessarily unitary) W N (p, q) minimal models biject onto a well-defined subset of those of the SU(N) × SU(N) Wess-Zumino-Witten theories at level (pN, qN). This permits considerable simplifications to the proof of the Cappelli-Itzykson-Zuber classification of Virasoro minimal models. More important, we obtain from this the complete classification of all modular invariants for the W 3(p, q) minimal models. All should be realised by rational conformal field theories. Previously, only those for the unitary models, i.e. W 3(p, p + 1), were classified. For all N our correspondence yields for free an extensive list of W N (p, q) modular invariants. The W 3 modular invariants, like the Virasoro minimal models, all factorise into SU(3) modular invariants, but this fails in general for larger N. We also classify the SU(3) × SU(3) modular invariants, and find there a new infinite series of exceptionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer M., Coste A., Itzykson C., Ruelle P.: Comments on the links between su(3) modular inariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards. J. Geom. Phys. 22, 134–189 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Beltaos, E.: The modular invariants of \({(A_{2,p'}\oplus A_{2,p})^{(1)}}\) where gcd(p′, p) = 1. MSc Thesis, University of Alberta, 2004

  3. Beltaos, E.: Fixed point factorization and NIM-reps for the affine Kac-Moody algebras, and the non-unitary W 3 minimal models. PhD Thesis, University of Alberta, 2009

  4. Böckenhauer, J., Evans, D.E.: Subfactors and modular invariants. In: Mathematical Physics in Mathematics and Physics (Sienna, 2000). Providence, RI: Amer. Math. Soc., 2001, pp. 11–37

  5. Bourbaki N.: Groupes et algèbres de Lie, IV-VI. Hermann, Paris (1968)

    Google Scholar 

  6. Bouwknegt P., Schoutens K.: W-symmetry in conformal field theory. Phys. Rep. 223, 183–276 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bouwknegt, P., Schoutens, K. (eds): W-symmetry. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  8. Cappelli A., Itzykson C., Zuber J.-B.: The A-D-E classification of \({A_1^{(1)} }\) and minimal conformal field theories. Commun. Math. Phys. 113, 1–26 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cappelli A., Itzykson C., Zuber J.-B.: Modular invariant partition functions in two dimensions. Nucl. Phys. B280, 445–465 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. Coste A., Gannon T.: Remarks on Galois in rational conformal field theories. Phys. Lett. B323, 316–321 (1994)

    MathSciNet  ADS  Google Scholar 

  11. Di Francesco P., Mathieu P., Sénéchal D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  12. Fateev V.A., Lukyanov S.L.: The models of two-dimensional conformal Quantum Field Theory with Z (n) symmetry. Int. J. Mod. Phys. A3, 507–520 (1988)

    MathSciNet  ADS  Google Scholar 

  13. Frenkel E., Kac V., Wakimoto M.: Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys. 147, 295–328 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gannon T.: The classification of affine SU(3) modular invariant partition functions. Commun. Math. Phys. 161, 233–264 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Gannon T.: Towards a classification of \({su(2) \oplus \cdots \oplus su(2)}\) modular invariant partition functions. J. Math. Phys. 36, 675–706 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gannon T.: The classification of affine SU(3) modular invariants revisited. Ann. Inst. Henri Poincaré: Phys. Théor. 65, 15–55 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Gannon T.: Symmetries of the Kac-Peterson modular matrices of affine algebras. Invent. Math. 122, 341–357 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Gannon T.: Comments on nonunitary conformal field theories. Nucl. Phys. B670, 335–358 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. Gannon T., Walton M.: On the classification of diagonal coset modular invariants. Commun. Math. Phys. 173, 175–197 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Gannon T.: The Cappelli-Itzykson-Zuber A-D-E classification. Rev. Math. Phys. 12, 739–748 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Gannon T.: Modular data: the algebraic combinatorics of rational conformal field theory. J. Alg. Combin. 22, 211–250 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gepner D., Qui Z.: Modular invariant partition functions for parafermionic theories. Nucl. Phys. B285, 423–453 (1987)

    Article  ADS  Google Scholar 

  23. Kac, V. G.: Infinite dimensional Lie algebras, 3rd edn. Cambridge: Cambridge University Press, 1990

  24. Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kato A.: Classification of modular invariant partition functions in two dimensions. Mod. Phys. Lett. A2, 585–600 (1987)

    ADS  Google Scholar 

  26. Koblitz N., Rohrlich D.: Simple factors in the Jacobian of a Fermat curve. Canad. J. Math. XXX, 1183–1205 (1978)

    Article  MathSciNet  Google Scholar 

  27. Lu S.: On modular invariant partition functions in nonunitary theories. Phys. Lett. B218, 46–50 (1989)

    ADS  Google Scholar 

  28. Mathieu P., Walton M.A.: Fractional-level Kac-Moody algebras and non-unitary coset conformal field theories. Prog. Theor. Phys. Suppl. 102, 229–254 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. Moore G., Seiberg N.: Naturality in conformal field theory. Nucl. Phys. B313, 16–40 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  30. Runkel, I., Fjelstad, J., Fuchs, J., Schweigert, C.: Topological and conformal field theory as Frobenius algebras. In: Categories in Algebra, Geometry and Mathematical Physics (Sydney, 2005). Providence, RI: Amer. Math. Soc., 2007, pp. 225–248

  31. Schellekens A.N., Yankielowicz S.: Modular invariants from simple currents. An explicit proof. Phys. Lett. B227, 387–391 (1989)

    MathSciNet  ADS  Google Scholar 

  32. Zamoldchikov A.B.: Infinite additional symmetries in two dimensional conformal field theory. Theor. Math. Phys. 65, 1205–1213 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Gannon.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltaos, E., Gannon, T. The W N Minimal Model Classification. Commun. Math. Phys. 312, 337–360 (2012). https://doi.org/10.1007/s00220-012-1473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1473-4

Keywords

Navigation