Skip to main content
Log in

Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C(G q /K q ) of the algebra of continuous functions on G/K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C(G q /K q ) and obtain a composition series for C(G q /K q ). We describe closures of the symplectic leaves of G/K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C(G q /K q ). Next we show that the family of C*-algebras C(G q /K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra \({\mathbb{C}[G/K]}\) . Finally, extending a result of Nagy, we show that C(G q /K q ) is canonically KK-equivalent to C(G/K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica T.: Representations of compact quantum groups and subfactors. J. Reine Angew. Math. 509, 167–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauval A.: Quantum group- and Poisson-deformation of SU(2). In: “Recent advances in operator algebras”. (Orléans, 1992), Astérisque 232, 49–65 (1995)

  3. Bernštein, I.N., Gel’fand, I.M., Gel’fand, S.I.: Schubert cells, and the cohomology of the spaces G/P (Russian), Usp. Mat. Nauk 28(3), 3–26 (1973); translated in Russ. Math. Surv. 28(3), 1–26 (1973)

  4. Blanchard É.: Déformations de C *-algèbres de Hopf. Bull. Soc. Math. France 124, 141–215 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: \’Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Paris: Hermann, 1968

  6. Chakraborty, P.S., Sundar, S.: K-groups of the quantum homogeneous space SU q (n)/SU q (n−2). preprint http://arXiv.org/abs/1006.1742v1 [math.KT], 2010

  7. D’Andrea F., Da̧browski L.: Dirac operators on quantum projective spaces. Commun. Math. Phys. 295, 731–790 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Dijkhuizen M.S., Stokman J.V.: Quantized flag manifolds and irreducible *-representations. Commun. Math. Phys. 203, 297–324 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Hajac P.M., Majid S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hodgkin L.: On the K-theory of Lie groups. Topology 6, 1–36 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karolinskiy E.: Classification of Poisson homogeneous spaces of a compact Poisson-Lie group (Russian). Mat. Fiz. Anal. Geom. 3, 274–289 (1996)

    MathSciNet  Google Scholar 

  12. Kirchberg E., Wassermann S.: Operations on continuous bundles of C *-algebras. Math. Ann. 303, 677–697 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klimek S., Lesniewski A.: A two-parameter quantum deformation of the unit disc. J. Funct. Anal. 115, 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knapp, A.W.: Lie groups beyond an introduction. Second edition. Progress in Mathematics 140, Boston, MA: Birkhäuser Boston, Inc., 2002

  15. Korogodski, L.I., Soibelman, Ya.S.: Algebras of functions on quantum groups. Part I. Mathematical Surveys and Monographs 56, Providence, RI: Amer. Math. Soc., 1998

  16. Landsman N.P.: Mathematical topics between classical and quantum mechanics. Springer Monographs in Mathematics. Springer-Verlag, New York (1998)

    Book  Google Scholar 

  17. Lu J.-H., Weinstein A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom. 31, 501–526 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Nagy, G.: Deformation quantization and K-theory. In: “Perspectives on quantization” (South Hadley, MA, 1996), Contemp. Math. 214, Providence, RI: Amer. Math. Soc., 1998, pp. 111–134

  19. Nagy G.: Bivariant K-theories for C *-algebras.. K-Theory 19, 47–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagy G.: A deformation quantization procedure for C*-algebras. J. Operator Theory 44, 369–411 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Neshveyev S., Tuset L.: The Dirac operator on compact quantum groups. J. Reine Angew. Math. 641, 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neshveyev S., Tuset L.: On second cohomology of duals of compact groups. Int. J. Math. 22(9), 1231–1260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Neshveyev S., Tuset L.: K-homology class of the Dirac operator on a compact quantum group. Documenta Mathematica 16, 767–780 (2011)

    MATH  Google Scholar 

  24. Podkolzin G.B., Vainerman L.I.: Quantum Stiefel manifold and double cosets of quantum unitary group. Pacific J. Math. 188, 179–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rieffel, M.A.: Deformation quantization and operator algebras. In: “Operator theory: operator algebras and applications”, Part 1 (Durham, NH, 1988), Proc. Sympos. Pure Math. 51, Part 1, Providence, RI: Amer. Math. Soc., 1990, pp. 411–423

  26. Sheu A.J.L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space – the 2-sphere, with an appendix by J.-H. Lu and A. Weinstein. Commun. Math. Phys. 135, 217–232 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Sheu A.J.L.: Compact quantum groups and groupoid C *-algebras. J. Funct. Anal. 144, 371–393 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soibelman, Ya.S.: Algebra of functions on a compact quantum group and its representations (Russian). Algebra i Analiz 2, 190–212 (1990); translated in Leningrad Math. J. 2, 161–178 (1991)

    Google Scholar 

  29. Vaksman, L.L., Soibelman, Ya.S.: An algebra of functions on the quantum group SU(2) (Russian). Funkt. Anal. i Priloz. 22, 1–14 (1988), 96; translated in Funct. Anal. Appl. 22, 170–181 (1988) (1989)

    Google Scholar 

  30. Vaksman, L.L., Soibelman, Ya.S.: Algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres (Russian). Algebra i Analiz 2, 101–120 (1990); translated in Leningrad Math. J. 2, 1023–1042 (1991)

    Google Scholar 

  31. Steinberg R.: Lectures on Chevalley groups. Yale University, New Haven, CT (1968)

    MATH  Google Scholar 

  32. Stokman J.V.: The quantum orbit method for generalized flag manifolds. Math. Res. Lett. 10, 469–481 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Woronowicz S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Neshveyev.

Additional information

Communicated by A. Connes

Supported by the Research Council of Norway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neshveyev, S., Tuset, L. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers. Commun. Math. Phys. 312, 223–250 (2012). https://doi.org/10.1007/s00220-012-1455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1455-6

Keywords

Navigation