Skip to main content
Log in

Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix transforming the probability distributions in the former to the probability distributions in the latter. The Blackwell-Sherman-Stein (BSS) Theorem provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their information values in statistical decision problems. In this paper we extend the BSS Theorem to quantum statistical decision theory, where statistical models are replaced by families of density matrices defined on finite-dimensional Hilbert spaces, and transition matrices are replaced by completely positive, trace-preserving maps (i.e. coarse-grainings). The framework we propose is suitable for unifying results that previously were independent, like the BSS theorem for classical statistical models and its analogue for pairs of bipartite quantum states, recently proved by Shmaya. An important role in this paper is played by statistical morphisms, namely, affine maps whose definition generalizes that of coarse-grainings given by Petz and induces a corresponding criterion for statistical sufficiency that is weaker, and hence easier to be characterized, than Petz’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackwell, D.: Comparison of reconnaissances. Unpublished Rand Memorandum RM. 241, 1949

  2. Wald A.: Statistical Decision Functions. Wiley, New York (1950)

    MATH  Google Scholar 

  3. Blackwell, D.: Comparison of experiments. In: Proc. 2nd Berkeley Symposium on Mathematical Statistics and Probability, Berkely, CA: Univ. of California Press, 1951, pp. 93–102

  4. Sherman S.: On a theorem of Hardy, Littlewood, Pólya and Blackwell. Proc. Nat. Acad. Sciences 37, 826–831 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Stein, C.: Notes on a Seminar on Theoretical Statistics. I. Comparison of experiments. Report, University of Chicago, 1951

  6. Blackwell D.: Equivalent comparisons of experiments. Ann. Math. Stat. 24, 265–272 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  7. Le Cam L.: Asymptotic methods in statistical decision theory. Springer Series in Statistics. Springer-Verlag, New York-Berlin-Heidelberg (1986)

    Book  Google Scholar 

  8. Torgersen E.: Comparison of Statistical Experiments. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  9. Le Cam, L.: Comparison of experiments - a short review. In: Statistics, probability and game theory: Papers in honor of David Blackwell, IMS Lecture Notes, Monograph Series 30, Hayward, CA: Inst. of Math. Sci., 1996, pp. 127–138

  10. Goel P.K., Ginebra J.: When is one experiment ‘Always better than’ another?. J. Royal Stat. Soc. D 52, 515–537 (2003)

    Article  MathSciNet  Google Scholar 

  11. Holevo A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337–394 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ozawa M.: Optimal measurements for general quantum systems. Rep. Math. Phys. 18, 11–28 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Petz D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Jenčová A., Petz D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Shmaya E.: Comparison of information structures and completely positive maps. J. Phys. A: Math. Gen. 38, 9717–9727 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Chefles, A.: The Quantum Blackwell Theorem and Minimum Error State Discrimination. http://arxiv.org/abs/:0907.0866v4 [quant-ph], 2009

  17. Morse N., Sacksteder R.: Statistical Isomorphism. Ann. Math. Stat. 37, 203–214 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi M.-D.: Positive linear maps on C*-algebras. Canad. J. Math. 24, 520–529 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arveson W.B.: Subalgebras of C*-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton NJ (1970)

    MATH  Google Scholar 

  21. Ozawa M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. Matsumoto, K.: A quantum version of randomization condition. http://arxiv.org/abs/1012.2650v1 [quant-ph], 2010

  23. D’Ariano G.M., Lo Presti P.: Imprinting a complete information about a quantum channel on its output state. Phys. Rev. Lett. 91, 047902 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Buscemi.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscemi, F. Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency. Commun. Math. Phys. 310, 625–647 (2012). https://doi.org/10.1007/s00220-012-1421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1421-3

Keywords

Navigation