Skip to main content
Log in

Almost Commutative Riemannian Geometry: Wave Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Associated to any (pseudo)-Riemannian manifold M of dimension n is an n + 1-dimensional noncommutative differential structure (Ω1, d) on the manifold, with the extra dimension encoding the classical Laplacian as a noncommutative ‘vector field’. We use the classical connection, Ricci tensor and Hodge Laplacian to construct (Ω2, d) and a natural noncommutative torsion free connection \({(\nabla,\sigma)}\) on Ω1. We show that its generalised braiding \({\sigma:\Omega^1\otimes\Omega^1\to \Omega^1\otimes\Omega^1}\) obeys the quantum Yang-Baxter or braid relations only when the original M is flat, i.e. their failure is governed by the Riemann curvature, and that σ 2 = id only when M is Einstein. We show that if M has a conformal Killing vector field τ then the cross product algebra \({C(M)\rtimes_\tau\mathbb{R}}\) viewed as a noncommutative analogue of \({M\times\mathbb{R}}\) has a natural n + 2-dimensional calculus extending Ω1 and a natural spacetime Laplacian now directly defined by the extra dimension. The case \({M=\mathbb{R}^3}\) recovers the Majid-Ruegg bicrossproduct flat spacetime model and the wave-operator used in its variable speed of light prediction, but now as an example of a general construction. As an application we construct the wave operator on a noncommutative Schwarzschild black hole and take a first look at its features. It appears that the infinite classical redshift/time dilation factor at the event horizon is made finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amelino-Camelia G., Majid S.: Waves on noncommutative spacetime and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301–4323 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  2. Beggs E.J., Majid S.: Semiclassical differential structures. Pac. J. Math. 224, 1–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beggs, E.J., Majid, S.: Quantization by cochain twists and nonassociative differentials. J. Math. Phys. 51, 053522 (2010) (32pp)

    Google Scholar 

  4. Beggs E.J., Majid S.: *-Compatible connections in noncommutative Riemannian geometry. J. Geom. Phys. 61, 95–124 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Beggs, E.J., Majid, S.: Nonassociative Riemannian geometry by twisting. J. Phys. Conf. Ser. 254, 012002 (2010) (29pp)

    Google Scholar 

  6. Connes A.: Noncommutative Geometry. Academic Press, London-Newyork (1994)

    MATH  Google Scholar 

  7. Dimakis, A., Müller-Hoissen, F.: A noncommutative differential calculus and its relation to gauge theory and gravitation. Int. J. Mod. Phys. A (Proc. Suppl.) 3A, 474–477 (1993); Noncommutative differential calculus, gauge theory and gravitation, Gottingen preprint, 1992

  8. Dubois-Violette M., Masson T.: On the first-order operators in bimodules. Lett. Math. Phys. 37, 467–474 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dubois-Violette M., Michor P.W.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20, 218–232 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Freidel, L., Majid, S.: Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity. Class. Quant. Grav. 25, 045006 (2008) (37pp)

    Google Scholar 

  11. Majid S.: Hopf algebras for physics at the Planck scale. J. Class. Quant. Grav. 5, 1587–1607 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Majid S., Ruegg H.: Bicrossproduct structure of the κ-Poincare group and non-commutative geometry. Phys. Lett. B. 334, 348–354 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Majid S.: Quantum and braided group Riemannian geometry. J. Geom. Phys. 30, 113–146 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Majid S.: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225, 131–170 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Majid, S.: Noncommutative model with spontaneous time generation and Planckian bound. J. Math. Phys. 46, 103520 (2005) (18pp)

    Google Scholar 

  16. Majid S.: q-Fuzzy spheres and quantum differentials on B q [SU 2] and U q (su 2). Lett. Math. Phys. 98(2), 167–191 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Majid, S., Schroers, B.: q-Deformation and semidualisation in 3D quantum gravity. J. Phys A 42, 425402 (2009) (40pp)

    Google Scholar 

  18. Mourad J.: Linear connections in noncommutative geometry. Class. Quantum Grav. 12, 965–974 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Sitarz A.: Noncommutative differential calculus on the κ-Minkowski space. Phys.Lett. B 349, 42–48 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  20. Schupp, P., Solodukhin, S.N.: Exact black hole solutions in noncommutative gravity. http://arXiv.org/abs/0906.2724v1 [hep-th], 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahn Majid.

Additional information

Communicated by A. Connes

The author was supported by a Leverhulme Senior Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majid, S. Almost Commutative Riemannian Geometry: Wave Operators. Commun. Math. Phys. 310, 569–609 (2012). https://doi.org/10.1007/s00220-012-1416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1416-0

Keywords

Navigation