Skip to main content
Log in

Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in \({(\mathbb {C}^d)^{\otimes k}}\), where k and p/d k are fixed while d → ∞. When k = 1, the Marčenko-Pastur law determines (up to small corrections) not only the largest eigenvalue (\({(1+\sqrt{p/d^k})^2}\)) but the smallest eigenvalue \({(\min(0,1-\sqrt{p/d^k})^2)}\) and the spectral density in between. We use the method of moments to show that for k > 1 the largest eigenvalue is still approximately \({(1+\sqrt{p/d^k})^2}\) and the spectral density approaches that of the Marčenko-Pastur law, generalizing the random matrix theory result to the random tensor case. Our bound on the largest eigenvalue has implications both for sampling from a particular heavy-tailed distribution and for a recently proposed quantum data-hiding and correlation-locking scheme due to Leung and Winter.

Since the matrices we consider have neither independent entries nor unitary invariance, we need to develop new techniques for their analysis. The main contribution of this paper is to give three different methods for analyzing mixtures of random product states: a diagrammatic approach based on Gaussian integrals, a combinatorial method that looks at the cycle decompositions of permutations and a recursive method that uses a variant of the Schwinger-Dyson equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyesinghe A., Devetak I., Hayden P., Winter A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. Roc. Soc. A 465(2108), 2537–2563 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Adamczak R., Litvak A., Pajor A., Tomczak-Jaegermann N.: Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Amer. Math. Soc. 23, 535–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, http://arXiv.org/abs/0904.4723v1 [math.PR], 2009

  4. Ahlswede R., Winter A.: Strong converse for identification via quantum channels. IEEE Trans. Inf. Theory 48(3), 569–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson A., Meyrs R.C., Periwal V.: Complex random surfaces. Phys. Lett. B 254(1-2), 89–93 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. Anderson A., Myers R.C., Periwal V.: Branched polymers from a double-scaling limit of matrix models. Nucl. Phys. B 360(2-3), 463–479 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  7. Arratia R., Bollobás B., Sorkin G.: The interlace polynomial of a graph. J. Comb. Th. B 92(2), 199–233 (2004)

    Article  MATH  Google Scholar 

  8. Ben-Aroya, A., Schwartz, O., Ta-Shma, A.: Quantum expanders: motivation and construction. In: CCC, 2008. http://arXiv.org/abs/0709.0911v1 [quant-ph], 2007 and http://arXiv.org/abs/quant-ph/0702129v3, 2007, Th. Quant. Comp. 6, no.3, 47–79 (2010)

  9. Bennett C.H., Hayden P., Leung D.W., Shor P.W., Winter A.J.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2005)

    Article  MathSciNet  Google Scholar 

  10. Collins, B., Nechita, I.: Gaussianization and eigenvalue statistics for random quantum channels (III), 2009, http://arXiv.org/abs/0910.1768v2 [quant-ph], 2009

  11. Collins B., Nechita I.: Random quantum channels I: graphical calculus and the bell state phenomenon. Commun. Math. Phys. 297(2), 345–370 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bose A., Sen A.: Another look at the moment method for large dimensional random matrices. Elec. J. of Prob. 13(21), 588–628 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Brézin E., Itzykson C., Parisi G., Zuber J.B.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)

    Article  ADS  MATH  Google Scholar 

  14. Brézin E., Zee A.: Correlation functions in disordered systems. Phys. Rev. E 49, 2588 (1994)

    Article  ADS  Google Scholar 

  15. Christandl, M.: The structure of bipartite quantum states: Insights from group theory and cryptography. PhD thesis, University of Cambridge, 2006. http://arXiv.org/abs/quant-ph/0604183v1, 2006

  16. Collins B., Guionnet A., Maurel-Segala E.: Asymptotics of unitary and orthogonal matrix integrals. Adv. Math. 222(1), 172–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feinberg J., Zee A.: Renormalizing rectangles and other topics in random matrix theory. J. Stat. Phys. 87(3-4), 473–504 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Forrester, P.: Log-gases and random matrices. Chapter 2. LMS-34, Princeton, NJ: Princeton Univ. Press, 2010

  19. Guionnet A., Maurel-Segala E.: Combinatorial aspects of matrix models. ALEA Lat. Am. J. Probab. Math. Stat. 1, 241–279 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Guionnet A., Maurel-Segala E.: Second order asymptotics for matrix models. Ann. Probab. 35(6), 2160–2212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hastings M.B.: Entropy and entanglement in quantum ground states. Phys. Rev. B 76, 035114 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hastings M.B.: Random unitaries give quantum expanders. Phys. Rev. A 76, 032315 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hastings M.B.: A counterexample to additivity of minimum output entropy. Nature Physics 5, 225 (2009)

    Article  ADS  Google Scholar 

  24. Hayden P., Leung D.W., Shor P.W., Winter A.J.: Randomizing quantum states: Constructions and applications. Commun. Math. Phys. 250, 371–391 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Hayden P., Winter A.J.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p >  1. Commun. Math. Phys. 284(1), 263–280 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Horn, R.A., Johnson, C.: Matrix Analysis. Cambridge: Cambridge University Press, 1985

  28. Johnstone I.M.: On the distribution of the largest eigenvalue in principle components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Langer J.S., Neal T.: Breakdown of the concentration expansion for the impurity resistivity of metals. Phys. Rev. Lett. 16, 984 (1966)

    Article  ADS  Google Scholar 

  30. Ledoux, M.: The Concentration of Measure Phenomenon. Providence, RI: Amer. Math. Soc., 2001

  31. Ledoux, M.: Deviation inequalities on largest eigenvalues. In V. Milman, G. Schechtman, editors, Geometric Aspects of Functional Analysis, Volume 1910 of Lecture Notes in Mathematics, pp. 167–219. Berlin / Heidelberg: Springer, 2007

  32. Leung, D.W., Winter, A.J.: Locking 2-LOCC distillable common randomness and LOCC-accessible information. In preparation

  33. Montanaro A.: On the distinguishability of random quantum states. Commun. Math. Phys. 273(3), 619–636 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Myers R.C., Periwal V.: From polymers to quantum gravity: Triple-scaling in rectangular random matrix models. Nucl. Phys. B 390(3), 716–746 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  35. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge: Cambridge University Press, 2006

  36. Rains E.: Combinatorial properties of brownian motion on the compact classical groups. J. Theor. Probab. 10, 659–679 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rudelson M.: Random vectors in the isotropic position. J. Func. Anal. 164(1), 60–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith G., Smolin J.: Extensive nonadditivity of privacy. Phys. Rev. Lett. 103, 120503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  39. Soshnikov A.: Universality at the edge of the spectrum in wigner random matrices. Commun. Math. Phys. 207, 697–733 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Speicher, R.: Free probability theory and non-crossing partitions. Cambridge: Sem. Lothar. Comb B39c, 1997

  41. Stanley, R.P.: Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999, Exercise 6.36 and references therein

  42. Sulanke R.A.: The Narayana distribution. J. of Stat. Planning and Inference 101(1-2), 311–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Verbaarschot J.: Spectrum of the QCD Dirac operator and chiral random matrix theory. Phys. Rev. Lett. 72(16), 2531–2533 (1994)

    Article  ADS  Google Scholar 

  44. Verbaarschot J.: The spectrum of the Dirac operator near zero virtuality for N c =  2 and chiral random matrix theory. Nucl. Phys. B 426(3), 559–574 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Yard, J., Devetak, I.: Optimal quantum source coding with quantum information at the encoder and decoder, 2007. http://arXiv.org/abs/0706.2907v5 [math.CA], 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram W. Harrow.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambainis, A., Harrow, A.W. & Hastings, M.B. Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States. Commun. Math. Phys. 310, 25–74 (2012). https://doi.org/10.1007/s00220-011-1411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1411-x

Keywords

Navigation