Skip to main content
Log in

Spectral Action for Torsion with and without Boundaries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues of the previous calculations, show that many terms in fact cancel out, and demonstrate that this cancellation is a result of the chiral symmetry of spectral action. On the boundary, we calculate several leading terms in the expansion of spectral action in four dimensions for vanishing chiral parameter θ of the boundary conditions, and show that θ = 0 is a critical point of the action in any dimension and at all orders of the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrianov A.A., Lizzi F.: Bosonic spectral action induced from anomaly cancellation. JHEP 1005, 057 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. Beneventano C., Gilkey P., Kirsten K., Santangelo E.: Strong ellipticity and spectral properties of chiral bag boundary conditions. J. Phys. A: Math. Gen. 36, 11533–11543 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Branson T.P., Gilkey P.B.: The asymptotics of the Laplacian on a manifold with boundary. Commun. Part. Diff. Eq. 15, 245–272 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branson T., Gilkey P.: Residues of the eta function for an operator of Dirac type with local boundary conditions. Diff. Geom. Appl. 2, 249–267 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Branson T., Gilkey P., Kirsten K., Vassilevich D.: Heat kernel asymptotics with mixed boundary conditions. Nucl. Phys. B 563, 603–626 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Chamseddine A., Connes A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Chamseddine A., Connes A.: Quantum gravity boundary terms from the spectral action on noncommutative space. PRL 99, 071302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chamseddine A., Connes A.: Noncommutative geometric spaces with boundary: spectral action. J. Geom. Phys. 61, 317–332 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chamseddine A., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Cognola G., Zerbini S.: Heat kernel expansion in geometric fields. Phys. Lett. B 195, 435–438 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  11. Connes A.: Noncommutative Geometry. Academic Press, London-San Diego (1994)

    MATH  Google Scholar 

  12. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Colloquium Publications, Vol. 55, Providence. RI: Amer. Math. Soc., 2008

  13. Eguchi T., Gilkey P.B., Hanson A.J.: Gravitation, gauge theories and differential geometry. Phys. Rept. 66, 213–393 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  14. Esposito G., Gilkey P., Kirsten K.: Heat kernel coefficients for chiral bag boundary conditions. J. Phys. A: Math. Gen. 38, 2259–2276 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Esposito G., Kirsten K.: Chiral bag boundary conditions on the ball. Phys. Rev. D 66, 085014 (2002)

    Article  ADS  Google Scholar 

  16. Friedrich, Th., Sulanke, S.: Ein kriterium für die formale selbstadjungiertheit des Dirac-operators. Coll. Math. XL, 239–247 (1979)

    Google Scholar 

  17. Gilkey, P.B.: Invariance Theory, the heat equation, and the Atiyah–Singer Index theorem. Mathematics Lecture Series, Vol. 11, Wilmington, DE: Publish or Perish, Inc., 1984

  18. Gilkey, P.B.: Asymptotic Formulae in Spectral Geometry. Boca Raton, FL: Chapman & Hall/CRC, 2004

  19. Gilkey P., Kirsten K.: Stability theorems for chiral bag boundary conditions. Lett. Math. Phys. 73, 147–163 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Goldthorpe W.H.: Spectral geometry and SO(4) gravity in a Riemann–Cartan spacetime. Nucl. Phys. B 170, 307–328 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  21. Grensing G.: Induced gravity for nonzero torsion. Phys. Lett. 169, 333–336 (1986)

    MathSciNet  Google Scholar 

  22. Grubb, G.: Functional calculus of pseudodifferential boundary problems. Second edition, Progress in Mathematics 65, Boston: Birkhäuser, 1996

  23. Hanish F., Pfäffle F., Stephan C.A.: The spectral action for Dirac operators with skew-symmetric torsion. Commun. Math. Phys. 300, 877–888 (2010)

    Article  ADS  Google Scholar 

  24. Hasenfratz P., Kuti J.: The quark bag model. Phys. Rept. 40, 75–179 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  25. Hawking S., Horowitz G.: The gravitational Hamiltonian, action, entropy and surface terms. Class. Quantum Grav. 13, 1487–1498 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Heckel B.R., Adelberger E.G., Cramer C.E., Cook T.S., Schlamminger S., Schmidt U.: Preferred-frame and CP-violation tests with polarized electrons. Phys. Rev. D 78, 092006 (2008)

    Article  ADS  Google Scholar 

  27. Hrasko P., Balog J.: The fermion boundary condition and the θ-angle in QED 2. Nucl. Phys. B 245, 118–126 (1984)

    Article  ADS  Google Scholar 

  28. Iochum B., Levy C.: Tadpoles and commutative spectral triples. J. Noncommut. Geom. 5, 299–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iochum B., Levy C.: Spectral triples and manifolds with boundary. J. Funct. Anal. 260, 117–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirsten, K.: Spectral Functions in Mathematics and Physics. Boca Ratonm, FL: Chapman & Hall/CRC, 2002

  31. Kleinert H.: New gauge symmetry in gravity and the evanescent role of torsion. Electron. J. Theor. phys. 27, 287 (2010)

    Google Scholar 

  32. Kostelecky V.A., Russell N., Tasson J.: Constraints on torsion from Lorentz violation. Phys. Rev. Lett. 100, 111102 (2008)

    Article  ADS  Google Scholar 

  33. Marachevsky V.N., Vassilevich D.V.: Chiral anomaly for local boundary conditions. Nucl. Phys. B 677, 535–552 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Obukhov Y.N.: Spectral geometry of the Riemann–Cartan space-time. Nucl. Phys. B 212, 237–254 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  35. Shapiro I.L.: Physical aspects of the space-time torsion. Phys. Rept. 357, 113–213 (2002)

    Article  ADS  MATH  Google Scholar 

  36. Shapiro, I.L.: “Effective QFT and what it tells us about dynamical torsion”. http://arxiv.org/abs/1007.5294v2 [hep-th], 2010, to appear in Proc. of 5th Meeting on CPT and oreatz Symmetry (Bloomington. IN, five 28-July 2, 2010)

  37. Vassilevich D.V.: Vector fields on a disk with mixed boundary conditions. J. Math. Phys. 36, 3174–3182 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Vassilevich D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Wipf A., Dürr S.: Gauge theories in a bag. Nucl. Phys. B 443, 201–232 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Iochum.

Additional information

Communicated by A. Connes

UMR 6207: Unité Mixte de Recherche du CNRS et des Universités Aix-Marseille I, Aix-Marseille II et de l’Université du Sud Toulon-Var (Aix-Marseille Université); Laboratoire affilié à la FRUMAM – FR 2291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iochum, B., Levy, C. & Vassilevich, D. Spectral Action for Torsion with and without Boundaries. Commun. Math. Phys. 310, 367–382 (2012). https://doi.org/10.1007/s00220-011-1406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1406-7

Keywords

Navigation