Skip to main content
Log in

There are no Magnetically Charged Particle-like Solutions of the Einstein Yang-Mills Equations for Models with an Abelian Residual Group

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that there are no magnetically charged particle-like solutions for any model with an Abelian residual group in Einstein Yang-Mills, but for the non-Abelian models the possibility remains open. An analysis of the Lie algebraic structure of the Yang-Mills fields is essential to our results. In one key step of our analysis we use invariant polynomials to determine which orbits of the gauge group contain the possible asymptotic Yang-Mills field configurations. Together with a new horizontal/vertical space decomposition of the Yang-Mills fields this enables us to overcome some obstacles and complete a dynamical system existence theorem for asymptotic solutions with nonzero total magnetic charge. We then prove that these solutions cannot be extended globally for Abelian models and begin an investigation of the details for non-Abelian models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott L.F., Deser S.: Charge definition in nonabelian gauge theories. Phys. Lett. B 116(4), 259–263 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aslaksen H., Tan E.-C., Zhu C.-b.: Quivers and the invariant theory of Levi subgroups. J. Funct. Anal. 120(1), 163–187 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aslaksen H., Tan E.-C., Zhu C.-b.: Invariant theory of special orthogonal groups. Pacific J. Math. 168(2), 207–215 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bartnik, R.: The spherically symmetric Einstein–Yang–Mills equations. In: Relativity Today, Z. Perjes, ed., Commack, NY: Nova Science, 1992, pp. 221–240

  5. Bartnik R., Fisher M., Oliynyk T.A.: Static spherically symmetric solutions of the SO(5) Einstein Yang–Mills equations. J. Math. Phys. 51(3), 32504–32513 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bizoń P., Popp O.T.: No-hair theorem for spherical monopoles and dyons in SU(2) Einstein Yang-Mills theory. Class. Quant. Grav. 9(1), 193– (1992)

    Article  ADS  MATH  Google Scholar 

  7. Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M.: Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. Anal. 136(1), 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breitenlohner P., Forgács P., Maison D.: On Static Spherically Symmetric Solutions of the Einstein–Yang–Mills Equations. Commun. Math. Phys. 163, 141–172 (1994)

    Article  ADS  MATH  Google Scholar 

  9. Brodbeck O., Straumann N.: A Generalized Birkhoff Theorem for the Einstein–Yang–Mills System. J. Math. Phys. 34, 2423–2424 (1993)

    Article  MathSciNet  Google Scholar 

  10. Brodbeck O., Straumann N.: Self–gravitating Yang–Mills solitons and their Chern–Simons numbers. J. Math. Phys. 35, 899–920 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Collingwood D.H., McGovern W.M.: Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York (1993)

    Google Scholar 

  12. Eardley D.M., Moncrief V.: The Global Existence of Yang–Mills–Higgs Fields in 4-Dimensional Minkowski Space I Local Existence and Smoothness Properties. Commun. Math. Phys. 83, 171–191 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Eardley D.M., Moncrief V.: The Global Existence of Yang–Mills fields in M 3+1. Commun. Math. Phys. 83, 171–212 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Fisher, M.: The Einstein-Yang-Mills equations – Particle-like Solutions for Non-Abelian Models. Ph.D. thesis, Monash University, 2010

  15. Forger M.: Invariant polynomials and Molien functions. J. Math. Phys. 39(2), 1107–1141 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kirchgraber, U., Palmer, K.J.: Geometry in the neighborhood of invariant manifolds of maps and flows and linearization. Pitman Research Notes in Mathematics Series, Vol. 233, Harlow: Longman Scientific & Technical, 1990

  17. Kleihaus B., Kunz J., Sood A.: SU(3) Einstein-Yang-Mills sphalerons and black holes. Phys. Lett. B 354(3-4), 240–246 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  18. Knapp A.W.: Lie groups beyond an introduction. Second ed., Progress in Mathematics, Vol. 140, Boston, MA: Birkhäuser Boston Inc., 2002

  19. Künzle H.P.: Analysis of the Static Spherically Symmetric su(n) Einstein–Yang–Mills Equations. Commun. Math. Phys. 162, 371–397 (1994)

    Article  ADS  MATH  Google Scholar 

  20. Oliynyk T.: The static spherically symmetric Einstein-Yang-Mills equations. Ph.D. thesis, University of Alberta, 2002

  21. Oliynyk T.A., Künzle H.P.: Local existence proofs for the boundary value problem for static spherically symmetric Einstein-Yang-Mills fields with compact gauge groups. J. Math. Phys. 43(5), 2363–2393 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Oliynyk T.A., Künzle H.P.: On all possible static spherically symmetric EYM solitons and black holes. Class. Quant. Grav. 19(3), 457–482 (2002)

    Article  ADS  MATH  Google Scholar 

  23. Oliynyk T.A., Künzle H.P.: On global properties of static spherically symmetric EYM fields with compact gauge groups. Class. Quant. Grav. 20(21), 4653–4682 (2003)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Fisher.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, M., Oliynyk, T.A. There are no Magnetically Charged Particle-like Solutions of the Einstein Yang-Mills Equations for Models with an Abelian Residual Group. Commun. Math. Phys. 312, 137–177 (2012). https://doi.org/10.1007/s00220-011-1388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1388-5

Keywords

Navigation