Skip to main content
Log in

Hamiltonian Dynamics and Spectral Theory for Spin–Oscillators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Hamiltonian dynamics and spectral theory of spin-oscillators. Because of their rich structure, spin-oscillators display fairly general properties of integrable systems with two degrees of freedom. Spin-oscillators have infinitely many transversally elliptic singularities, exactly one elliptic-elliptic singularity and one focus-focus singularity. The most interesting dynamical features of integrable systems, and in particular of spin-oscillators, are encoded in their singularities. In the first part of the paper we study the symplectic dynamics around the focus-focus singularity. In the second part of the paper we quantize the coupled spin-oscillators systems and study their spectral theory. The paper combines techniques from semiclassical analysis with differential geometric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F.: Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14(1), 1–15 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babelon, O., Cantini, L., Douç, B.: A semi-classical study of the Jaynes–Cummings model. J. Stat. Mech. Theory Exp. (2009). doi:10.1088/1742-5468/2009/07/P07011

  3. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform I. Comm. Pure Appl. Math. 19, 187–214 (1961)

    Article  MathSciNet  Google Scholar 

  4. Boutetde Monvel L., Guillemin V.: spectral theory of Toeplitz operators Number 99 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1981)

    Google Scholar 

  5. Charles L.: Berezin-toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239(1-2), 1–28 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Cushman R., Duistermaat J.J.: The quantum spherical pendulum. Bull. Amer. Math. Soc. (N.S.) 19, 475–479 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Delzant T.: Hamiltoniens périodiques et image convexe de l’application moment. Bull. Soc. Math. France 116, 315–339 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Dimassi M., Sjöstrand J.: Spectral asymptotics in the semi-classical limit Volume 268 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  9. Duistermaat J.J.: On global action-angle variables. Comm. Pure Appl. Math. 33, 687–706 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duistermaat J.J., Heckman G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Eliasson, L.H.: Hamiltonian systems with Poisson commuting integrals. PhD thesis, University of Stockholm, 1984

  12. Garay M., van Straten D.: Classical and quantum integrability. Mosc. Math. J. 10, 519–545 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Groenewold H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Gross M., Siebert B.: Mirror symmetry via logarithmic degeneration data. I. J. Diff. Geom. 72(2), 169–338 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Guillemin V., Sternberg S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kostant, B., Pelayo, Á.: Geometric Quantization. Monograph to appear in Springer.

  17. Leung N.C., Symington M.: Almost toric symplectic four-manifolds. J. Sympl. Geom. 8, 143–187 (2011)

    MathSciNet  Google Scholar 

  18. Moyal J.E.: Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45, 99–124 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Pelayo Á., Vũ Ngoc S.: Semitoric integrable systems on symplectic 4-manifolds. Invent. Math. 177, 571–597 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Pelayo Á., Vũ Ngọc S.: Constructing integrable systems of semitoric type. Acta Math. 206, 93–125 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pelayo Á., Vũ Ngoc S.: Symplectic theory of completely integrable Hamiltonian systems. Bull. Amer. Math. Soc 48, 409–455 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Symington, M.: Four dimensions from two in symplectic topology. In: Topology and geometry of manifolds (Athens, GA, 2001), Volume 71 of Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 2003, pp. 153–208

  23. Vũ Ngoc, S.: Symplectic inverse spectral theory for pseudodifferential operators. In: Geometric aspects of analysis and mechanics. Progress in Mathematics, vol. 292, pp. 353–372. Birkhäuser, Boston (2011)

  24. Vũ Ngoc S.: Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type. Comm. Pure Appl. Math. 53(2), 143–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vũ Ngoc S.: On semi-global invariants for focus-focus singularities. Topology 42(2), 365–380 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vũ Ngoc, S.: Systèmes intégrables semi-classiques: du local au global. Number 22 in Panoramas et Syhthèses. Paris: SMF, 2006

  27. Vũ Ngoc S.: Moment polytopes for symplectic manifolds with monodromy. Adv. in Math. 208, 909–934 (2007)

    Article  MATH  Google Scholar 

  28. Vũ Ngọc, S., Wacheux, C.: Smooth normal forms for integrable hamiltonian systems near a focus-focus singularity. http://arXiv.org/abs/1103.3282v1 [math.SG], 2011

  29. Weyl, H.: The theory of groups and quantum mechanics. Newyork: Dover, 1950, translated from the (second) German edition

  30. Williamson J.: On the algebraic problem concerning the normal form of linear dynamical systems. Amer. J. Math. 58(1), 141–163 (1936)

    Article  MathSciNet  Google Scholar 

  31. Zung, N.T.: A topological classification of integrable hamiltonian systems. In: R. Brouzet, editor, Séminaire Gaston Darboux de géometrie et topologie différentielle, Université Montpellier II, 1994–1995, pp. 43–54

  32. Zung N.T.: Symplectic topology of integrable hamiltonian systems, I: Arnold-Liouville with singularities. Compositio Math. 101, 179–215 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Pelayo.

Additional information

Communicated by S. Zelditch

Partly supported by NSF Postdoctoral Fellowship, NSF Grant DMS-0965738, and an Oberwolfach Leibniz Fellowship.

Partially supported by an ANR ’Programme Blanc’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelayo, Á., Vũ Ngọc, S. Hamiltonian Dynamics and Spectral Theory for Spin–Oscillators. Commun. Math. Phys. 309, 123–154 (2012). https://doi.org/10.1007/s00220-011-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1360-4

Keywords

Navigation