Skip to main content
Log in

Global Solutions to the 3-D Incompressible Anisotropic Navier-Stokes System in the Critical Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces \({\mathcal{B}}\) and \({\mathcal{B}^{-\frac12,\frac12}_4}\) (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data \({u_0 = (u_0^h, u_0^3)}\) which satisfies \({\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu}\) or \({\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu}\) for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, \({\widetilde{L^p_t}(\mathcal{B})}\), we introduced here sort of weighted Chemin-Lerner type spaces, \({\widetilde{L^2_{t, f}}(\mathcal{B})}\) for some apropriate L 1 function f(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343, Berlin-Heidelberg-NewYork: Springer, 2011

  2. Bony J.M.: Calcul symbolique et propagation des singularités pour les eq́uations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(4), 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier-Stokes, Séminaire “Équations aux Dérivées Partielles de l’École Polytechnique”, Exposé VIII, 1993–1994

  4. Cannone M.: A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoamericana 13, 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin J.Y.: Théorémes d’unicité pour le systéme de Navier-Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chemin, J.Y.: Localization in Fourier space and Navier-Stokes system. In: Phase Space Analysis of Partial Differential Equations, Vol. 1, Proceedings 2004, CRM series, Pisa: Pubbl. Cent. Ric. Mat. Ennio giorgi, pp. 53–136

  7. Chemin J.Y., Desjardins B., Gallagher I., Grenier E.: Fluids with anisotropic viscosity. Modélisation Mathématique et Analyse Numérique 34, 315–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin J.Y., Desjardins B., Gallagher I., Grenier E.:Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford Lecture Series in Mathematics and its Applications, 32, Oxford: Clarendon Press Oxford University Press, 2006

  9. Chemin J.Y., Gallagher I.: Large, global solutions to the Navier-Stokes equations, slowly varying in one direction. Trans. Amer. Math. Soc. 362, 2859–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chemin J.Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Diff. Eqs. 121, 314–328 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chemin J.Y., Zhang P.: On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations. Commun. Math. Phys. 272, 529–566 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ekman V.W.: On the influence of the earth’s rotation on ocean currents. Arkiv. Matem. Astr. Fysik. Stockholm 2(11), 1–52 (1905)

    Google Scholar 

  13. Fujita H., Kato T.: On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grenier E., Masmoudi N.: Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Par. Diff. Eqs. 22, 953–975 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Gui G., Zhang P.: Stability to the global large solutions of 3-D Navier-Stokes equations. Adv. Math. 225, 1248–1284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iftimie D.: The resolution of the Navier-Stokes equations in anisotropic spaces. Rev. Mat. Iberoamericana 15, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iftimie D.: A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity. SIAM J. Math. Anal. 33, 1483–1493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koch H., Tataru D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kukavica I., Ziane M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19, 453–469 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem. Chapman & Hall/CRC Research Notes in Mathematics, 431, Boca Raton, FL: Chapman & Hall/CRC, 2002

  21. Leray J.: Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pedlovsky, J.: Geophysical Fluid Dynamics. Berlin-Heidelberg-NewYork: Springer, 1979

  23. Paicu M.: Équation anisotrope de Navier-Stokes dans des espaces critiques. Revi. Mat. Iberoamericana 21, 179–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system. Preprint 2010

  25. Planchon F.: Asymptotic behavior of global solutions to the Navier-Stokes equations in R 3. Rev. Mat. Iberoamericana 14, 71–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang T.: Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space. Commun. Math. Phys. 287, 211–224 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Zhang T.: Erratum to: Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space. Commun. Math. Phys. 295, 877–884 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paicu, M., Zhang, P. Global Solutions to the 3-D Incompressible Anisotropic Navier-Stokes System in the Critical Spaces. Commun. Math. Phys. 307, 713–759 (2011). https://doi.org/10.1007/s00220-011-1350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1350-6

Keywords

Navigation