Advertisement

Ergodic Properties of a Model for Turbulent Dispersion of Inertial Particles

  • Krzysztof Gawȩdzki
  • David P. HerzogEmail author
  • Jan Wehr
Article

Abstract

We study a simple stochastic differential equation that models the dispersion of close heavy particles moving in a turbulent flow. In one and two dimensions, the model is closely related to the one-dimensional stationary Schrödinger equation in a random δ-correlated potential. The ergodic properties of the dispersion process are investigated by proving that its generator is hypoelliptic and using control theory.

Keywords

Invariant Measure Stochastic Differential Equation Inertial Particle Dispersion Process Ergodic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bec J.: Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255–277 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bec J., Cencini M., Hillerbrand R.: Heavy particles in incompressible flows: the large Stokes number asymptotics. Physica D 226, 11–22 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bec J., Cencini M., Hillerbrand R.: Clustering of heavy particles in random self-similar flow. Phys. Rev. E 75, 025301 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Bec J., Cencini M., Hillerbrand R., Turitsyn K.: Stochastic suspensions of heavy particles. Physica D 237, 2037–2050 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Duncan K., Mehlig B., Ostlund S., Wilkinson M.: Clustering in mixing flows. Phys. Rev. Lett. 95, 240602 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Elperin T., Kleeorin N., Rogachevskii I.: Self-Excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett. 77, 5373–5376 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Falkovich G., Fouxon A., Stepanov M.G.: Acceleration of rain initiation by cloud turbulence. Nature 419, 151–154 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Falkovich G., Gawȩdzki K., Vergassola M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Fouxon I., Horvai P.: Separation of heavy particles in turbulence. Phys. Rev. Lett. 100, 040601 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Fouxon I., Horvai P.: Fluctuation relation and pairing rule for Lyapunov exponents of inertial particles in turbulence. J. Stat. Mech.: Theor. & Experim. 08, (2007)CrossRefGoogle Scholar
  11. 11.
    Friz, P.K.: An Introduction to Malliavin Calculus, lecture notes, http://www.math.nyu.edu/phd-students/frizpete/malliavin/mall.pdf , 2002
  12. 12.
    Gawȩdzki, K.: Soluble models of turbulent transport. In: Non-Equilibrium Statistical Mechanics and Turbulence, eds. S. Nazarenko, O. Zaboronski, Cambridge: Cambridge University Press 2008, pp. 44–107Google Scholar
  13. 13.
    Gradstein, I.S., Rhyzik, I.M.: Table of Integrals, Series, and Products, Vth edition. New York: Academic Press 1994Google Scholar
  14. 14.
    Halperin B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Has’minskii, R.Z.: Stochastic Stability of Differential Equations. alphen aanden Rija, Netherlands: Sijthoff and Noordhoff, 1980Google Scholar
  16. 16.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol. III, Berlin: Springer, 1985Google Scholar
  17. 17.
    Horvai, P.: Lyapunov exponent for inertial particles in the 2D Kraichnan model as a problem of Anderson localization with complex valued potential, http://arxiv.org/abs/nlin/0511023v1 [nlin.co], 2005
  18. 18.
    Kraichnan R.H.: Small scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Le Jan Y., Raimond O.: Integration of Brownian vector fields. Ann. Probab. 30, 826–873 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Le Jan Y., Raimond O.: Flows, coalescence and noise. Ann. Probab. 32, 1247–1315 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lifshitz I.M., Gredeskul S., Pastur L.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)Google Scholar
  22. 22.
    Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101, 185–232 (2002). doi: 10.1016/S0304-4149(02)00150-3 http://dx.doi.org/10.1016/S0304-4149(02)00150-3
  23. 23.
    Maxey M.R., Riley J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Mehlig B., Wilkinson M.: Coagulation by random velocity fields as a Kramers problem. Phys. Rev. Lett 92, 250602 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Mehlig B., Wilkinson M., Duncan K., Weber T., Ljunggren M.: On the aggregation of inertial particles in random flows. Phys. Rev. E 72, 051104 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Meyn S.P., Tweedie R.L.: Markov Chains and Stochastic Stability Communication and Control Engineering Series. Springer-Verlag, London (1993)Google Scholar
  27. 27.
    Meyn S.P., Tweedie R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Norriss, J.: Simplified Malliavin calculus. In: Séminaire de probabilité XX, Lectures Note in Math. 1204, Berlin: Springer, 1986, pp. 101–130Google Scholar
  29. 29.
    Nualart, D.: Malliavin Calculus and Related Topics, 2nd edition, Berlin-Heidelberg: Springer, 2006Google Scholar
  30. 30.
    Piterbarg L.: The top Lyapunov exponent for a stochastic flow modeling the upper ocean turbulence. SIAM J. Appl. Math. 62, 777–800 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum systems II. The Markovian approach, Lecture notes in Mathematics 1881, Berlin: Springer, 2006, pp. 1–78Google Scholar
  32. 32.
    Scheutzow M.: Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11, 97–113 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proc. 6-th Berkeley Symp. Math. Stat. Prob., Vol. III, Berkeley: Univ. California Press, 1972, pp. 361368Google Scholar
  34. 34.
    Wilkinson M., Mehlig B.: The path-coalescence transition and its applications. Phys. Rev. E 68, 040101 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Wilkinson M., Mehlig B.: Caustics in turbulent aerosols. Europhys. Lett. 71, 186–192 (2005)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Krzysztof Gawȩdzki
    • 1
  • David P. Herzog
    • 2
    • 3
    Email author
  • Jan Wehr
    • 2
  1. 1.Laboratoire de Physique, C.N.R.S., ENS-LyonUniversité de LyonLyonFrance
  2. 2.Department of MathematicsThe University of ArizonaTucsonUSA
  3. 3.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations