Skip to main content
Log in

Surface Gap Soliton Ground States for the Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation

$$(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, \quad x\in {\mathbb R}^n$$

with V(x) = V 1(x), Γ(x) = Γ1(x) for x 1 > 0 and V(x) = V 2(x), Γ(x) = Γ2(x) for x 1 < 0, where V 1, V 2, Γ1, Γ2 are periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H 1 solutions (surface gap soliton ground states) for 0 < min σ(−Δ + V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with VV 1, Γ ≡ Γ1 and VV 2, Γ ≡ Γ2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators \({-\tfrac{d^2}{dx^2} +V_1(x)}\) and \({-\tfrac{d^2}{dx^2} +V_2(x)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Orive R.: On the band gap structure of Hill’s equation. J. Math. Anal. Appl. 306, 462–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrein W.O., Berthier A.-M., Georgescu V.: L p-inequalities for the Laplacian and unique continuation. Ann. Inst. Fourier 31, 153–168 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arcoya D., Cingolani S., Gámez J.: Asymmetric modes in symmetric nonlinear optical waveguides. SIAM J. Math. Anal. 30, 1391–1400 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blank E., Dohnal T.: Families of Surface Gap Solitons and their Stability via the Numerical Evans Function Method. SIAM J. Appl. Dyn. Syst. 10, 667–706 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dohnal T., Plum M., Reichel W.: Localized modes of the linear periodic Schrödinger operator with a nonlocal perturbation. SIAM J. Math. Anal. 41, 1967–1993 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dohnal T., Pelinovsky D.: Surface gap solitons at a nonlinearity interface. SIAM J. Appl. Dyn. Syst. 7, 249–264 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Efremidis N.K., Hudock J., Christodoulides D.N., Fleischer J.W., Cohen O., Segev M.: Two-dimensional optical lattice solitons. Phys Rev Lett. 91, 213906 (2003)

    Article  ADS  Google Scholar 

  8. Hempel R., Voigt J.: The spectrum of a Schrödinger operator in L p(R ν) is p-independent. Commun. Math. Phys. 104, 243–250 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lions P.L.: The concentration compactness principle in the calculus of variations. The locally compact case, II. Ann. Inst. H. Poincaré. Anal. Non Lin. 1, 223–283 (1984)

    MATH  Google Scholar 

  10. Kartashov Y.V., Vysloukh V.A., Torner L.: Surface gap solitons. Phys. Rev. Lett. 96, 073901 (2006)

    Article  ADS  Google Scholar 

  11. Kartashov Y., Vysloukh V., Szameit A., Dreisow F., Heinrich M., Nolte S., Tünnermann A., Pertsch T., Torner L.: Surface solitons at interfaces of arrays with spatially modulated nonlinearity. Opt. Lett. 33, 1120–1122 (2008)

    Article  ADS  Google Scholar 

  12. Kirr, E., Kevrekidis, P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. http://arXiv.org/abs/1012.3921v1 [math-ph], 2010

  13. Korotyaev E.: Schrödinger operator with a junction of two 1-dimensional periodic potentials. Asymptot. Anal. 45, 73–97 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Louis P.J.Y., Ostrovskaya E.A., Savage C.M., Kivshar Y.S.: Bose-Einstein condensates in optical lattices: Band-gap structure and solitons. Phys. Rev. A 67, 013602 (2003)

    Article  ADS  Google Scholar 

  15. Mingaleev S., Kivshar Y.: Nonlinear Photonic Crystals Toward All-Optical Technologies. Opt. Photon. News 13, 48–51 (2002)

    Article  ADS  Google Scholar 

  16. Makris K., Hudock J., Christodoulides D., Stegeman G., Manela O., Segev M.: Surface lattice solitons. Opt. Lett. 31, 2774–2776 (2006)

    Article  ADS  Google Scholar 

  17. Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Renardy M., Rogers R.C.: An introduction to partial differential equations. Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York (2004)

    Google Scholar 

  19. Rosberg Ch.R., Neshev D.N., Krolikowski W., Mitchell A., Vicencio R.A., Molina M.I., Kivshar Y.S.: Observation of surface gap solitons in semi-infinite waveguide arrays. Phys. Rev. Lett. 97, 083901 (2006)

    Article  ADS  Google Scholar 

  20. Schechter M., Simon B.: Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77, 482–492 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series. No. 30, Princeton, N.J.: Princeton University Press, 1970

  22. Struwe M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Second edition Results in Mathematics and Related Areas (3), 34. Springer-Verlag, Berlin (1996)

    Google Scholar 

  23. Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. 45, 169–192 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Suntsov S., Makris K., Christodoulides D., Stegeman G., Morandotti R., Volatier M., Aimez V., Arés R., Yang E., Salamo G.: Optical spatial solitons at the interface between two dissimilar periodic media: theory and experiment. Opt. Express 16, 10480–10492 (2008)

    Article  ADS  Google Scholar 

  25. Szameit A., Kartashov Y., Dreisow F., Pertsch T., Nolte S., Tünnermann A., Torner L.: Observation of Two-Dimensional Surface Solitons in Asymmetric Waveguide Arrays. Phys. Rev. Lett. 98, 173903 (2007)

    Article  ADS  Google Scholar 

  26. Szameit A., Kartashov Y.V., Dreisow F., Heinrich M., Vysloukh V.A., Pertsch T., Nolte S., Tünnermann A., Lederer F., Torner L.: Observation of two-dimensional lattice interface solitons. Opt. Lett. 33, 663–665 (2008)

    Article  ADS  Google Scholar 

  27. Wang X., Bezryadina A., Chen Z., Makris K.G., Christodoulides D.N., Stegeman G.I.: Observation of two-dimensional surface solitons. Phys. Rev. Lett. 98, 123903 (2007)

    Article  ADS  Google Scholar 

  28. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Boston, MA: Birkhäuser Boston, Inc., 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Reichel.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohnal, T., Plum, M. & Reichel, W. Surface Gap Soliton Ground States for the Nonlinear Schrödinger Equation. Commun. Math. Phys. 308, 511–542 (2011). https://doi.org/10.1007/s00220-011-1320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1320-z

Keywords

Navigation