Advertisement

Collisions of Particles in Locally AdS Spacetimes I. Local Description and Global Examples

  • Thierry Barbot
  • Francesco Bonsante
  • Jean-Marc SchlenkerEmail author
Article

Abstract

We investigate 3-dimensional globally hyperbolic AdS manifolds (or more generally constant curvature Lorentz manifolds) containing “particles”, i.e., cone singularities along a graph Γ. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than 2π on time-like singular segments). We construct examples of such manifolds, describe the cone singularities that can arise and the way they can interact (the local geometry near the vertices of Γ). We then adapt to this setting some notions like global hyperbolicity which are natural for Lorentz manifolds, and construct some examples of globally hyperbolic AdS manifolds with interacting particles.

Keywords

Convex Polyhedron Cauchy Surface Singular Line Hyperbolic Region Hyperbolic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ABB+07.
    Andersson T., Barbot T., Benedetti R., Bonsante F., Goldman W.M., Labourie F., Scannell K.P., Schlenker J.M.: Notes on a paper of Mess. Geom. Dedicata 126, 47–70 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Ale05.
    Alexandrov, A.D.: Convex polyhedra. Springer Monographs in Mathematics. Berlin: Springer-Verlag, 2005, translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, A. B. Sossinsky, with comments and bibliography by V. A. Zalgaller and Appendices by L. A. Shor and Yu. A. VolkovGoogle Scholar
  3. Bar08a.
    Barbot T.: Causal properties of AdS-isometry groups. I. Causal actions and limit sets. Adv. Theor. Math. Phys. 12(1), 1–66 (2008)MathSciNetzbMATHGoogle Scholar
  4. Bar08b.
    Barbot T.: Causal properties of AdS-isometry groups. II. BTZ multi-black-holes. Adv. Theor. Math. Phys. 12(6), 1209–1257 (2008)MathSciNetzbMATHGoogle Scholar
  5. BB09a.
    Benedetti, R., Bonsante, F.: (2 + 1) Einstein spacetimes of finite type. In: Handbook of Teichmüller theory. Vol. II, Volume 13 of IRMA Lect. Math. Theor. Phys. Zürich: Eur. Math. Soc., 2009, pp. 533–609Google Scholar
  6. BB09b.
    Benedetti, R., Bonsante, F.: Canonical Wick rotations in 3-dimensional gravity. Mem. Amer. Math. Soc., 198, Providence, RI: Amer. Math. Soc., 2009Google Scholar
  7. BBES03.
    Brock J., Bromberg K., Evans R., Souto J.: Tameness on the boundary and Ahlfors’ measure conjecture. Publ. Math. Inst. Hautes Études Sci. 98, 145–166 (2003)MathSciNetzbMATHGoogle Scholar
  8. BBS09.
    Barbot, T., Bonsante, F., Schlenker, J.-M.: Collisions of particles in locally AdS spacetimes. http://arXiv.org/abs/0905.1823v1 [math.DG], 2009
  9. BBS10.
    Barbot, T., Bonsante, F., Schlenker, J.-M.: Collisions of particles in locally AdS spacetimes II. Moduli of globally hyperbolic spaces. Work in progress, 2010Google Scholar
  10. BEE96.
    Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian Geometry. Marcel Dekker, New York (1996)zbMATHGoogle Scholar
  11. BKS06.
    Bonsante F., Krasnov K., Schlenker J.-M.: Multi black holes and earthquakes on Riemann surfaces with boundaries. Int. Math. Res. Not. 2011(3), 487–552 (2011)MathSciNetzbMATHGoogle Scholar
  12. Bro04.
    Bromberg K.: Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives. J. Amer. Math. Soc., 17(4), 783–826 (2004) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  13. BS09a.
    Bonsante F., Schlenker J.-M.: AdS manifolds with particles and earthquakes on singular surfaces. Geom. Funct. Anal. 19(1), 41–82 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. BS09b.
    Bonsante, F., Schlenker, J.-M.: Fixed points of compositions of earthquakes. http://arXiv.org/abs/0812.3471v3 [math.GT], 2010
  15. BS10.
    Bonsante F., Schlenker J.-M.: Maximal surfaces and the universal Teichmüller space. Invent. Math. 182(2), 279–333 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. BTZ92.
    Bañados M., Teitelboim C., Zanelli J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69(13), 1849–1851 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Car03.
    Carlip S.: Quantum Gravity in 2+ 1 Dimensions. Cambridge University Press, Cambridge (2003)Google Scholar
  18. CFGO94.
    Carroll S.M., Farhi E., Guth A.H., Olum K.D.: Energy-momentum restrictions on the creation of Gott time machines. Phys. Rev. D 50, 6190–6206 (1994)MathSciNetADSCrossRefGoogle Scholar
  19. DS93.
    Deser, S., Steif, A.R.: No Time Machines from Lightlike Sources in 2 + 1 Gravity. In: B. L. Hu, M. P. Ryan Jr., C. V. Vishveshwara, Ed., Directions in General Relativity: Papers in Honor of Charles Misner, Volume 1, 1993, Cambridge: Cambridge Univ. Press, 2005, p. 78ffGoogle Scholar
  20. Ger70.
    Geroch R.: Domain of dependence. J. Math. Phys. 11(2), 437–449 (1970)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. GL98.
    Gott J.R., Li-Xin Li.: Can the universe create itself?. Phys. Rev. Lett. 58(2), 02351 (1998)Google Scholar
  22. Gol10.
    Goldman, W.M.: Locally homogeneous geometric manifolds. In: Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), New Delhi: Hindustan Boook Agency, 2010, pp. 717–744 also available at http://arXiv.org/abs/1003.2759v2 [mathDG], 2010
  23. Got91.
    Gott J.R.: Closed timelike curves produced by pairs of moving cosmic strings: exact solutions. Phys. Rev. Lett. 66, 1126–1129 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Gra93.
    Grant J.D.E.: Cosmic strings and chronology protection. Phys. Rev. D 47, 2388 (1993)MathSciNetADSCrossRefGoogle Scholar
  25. HE73.
    Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London (1973)Google Scholar
  26. HK98.
    Hodgson C.D., Kerckhoff S.P.: Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Diff. Geom. 48, 1–60 (1998)MathSciNetzbMATHGoogle Scholar
  27. HM99.
    Holst S., Matschull H.J.: The anti-de Sitter Gott universe: a rotating BTZ wormhole. Class. Quant. Grav. 16(10), 3095–3131 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. KS07.
    Krasnov K., Schlenker J.-M.: Minimal surfaces and particles in 3-manifolds. Geom. Dedicata 126, 187–254 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. Mes07.
    Mess G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126, 3–45 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. MM.
    Mazzeo R., Montcouquiol G.: Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra. J. Diff. Geom. 37(3), 525–576 (2011)MathSciNetGoogle Scholar
  31. Sch98.
    Schlenker J.-M.: Métriques sur les polyèdres hyperboliques convexes. J. Diff. Geom. 48(2), 323–405 (1998)MathSciNetzbMATHGoogle Scholar
  32. Sch01.
    Schlenker J.-M.: Convex polyhedra in Lorentzian space-forms. Asian J. Math. 5(2), 327–363 (2001)MathSciNetzbMATHGoogle Scholar
  33. Ste94.
    Steif A.R.: Multiparticle solutions in 2+1 gravity and time machines. Int. J. Mod. Phys. D 3(1), 277–280 (1994)MathSciNetADSCrossRefGoogle Scholar
  34. tH93.
    ’t Hooft G.: The evolution of gravitating point particles in 2 + 1 dimensions. Class. Quant. Grav. 10(5), 1023–1038 (1993)MathSciNetADSCrossRefGoogle Scholar
  35. tH96.
    ’t Hooft G.: Quantization of point particles in (2 + 1)-dimensional gravity and spacetime discreteness. Class. Quant. Grav. 13(5), 1023–1039 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. Thu98.
    Thurston W.P.: Shapes of polyhedra and triangulations of the sphere. Geom. Topo. Mono. 1(1), 511–549 (1998)MathSciNetCrossRefGoogle Scholar
  37. Wei.
    Weiss, H.: The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2π. http://arXiv.org/abs/0904.4568v2 [math.DG], 2009

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thierry Barbot
    • 1
  • Francesco Bonsante
    • 2
  • Jean-Marc Schlenker
    • 3
    Email author
  1. 1.Laboratoire D’analyse Non Linéaire et GéométrieUniversité d’Avignon et Des Pays de VaucluseAvignonFrance
  2. 2.Dipartimento di Matematica dell’Università Degli Studi di PaviaPaviaItaly
  3. 3.Institut de Mathématiques de ToulouseUMR CNRS 5219, Université Paul SabatierToulouse Cedex 9France

Personalised recommendations