Skip to main content
Log in

Energy Transfer in a Fast-Slow Hamiltonian System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a nonlinear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anosov D.V., Sinai Ja.G.: Certain smooth ergodic systems. Uspehi Mat. Nauk 22(5), 107–172 (1967)

    MathSciNet  MATH  Google Scholar 

  2. Aoki K., Lukkarinen J., Spohn H.: Energy transport in weakly anharmonic chains. J. Stat. Phys. 124(5), 1105–1129 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Basile G., Bernardin C., Olla S.: Thermal conductivity for a momentum conservative model. Commun. Math. Phys. 287(1), 67–98 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Basile G., Olla S., Spohn H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Rat. Mech. Anal. 195(1), 171–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardin C.: Thermal conductivity for a noisy disordered harmonic chain. J. Stat. Phys. 133(3), 417–433 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, Imp. Coll. Press, London, 2000, pp. 128–150

  7. Bricmont J., Kupiainen A.: Towards a derivation of Fourier’s law for coupled anharmonic oscillators. Commun. Math. Phys. 274(3), 555–626 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bricmont J., Kupiainen A.: Random walks in space time mixing environments. J. Stat. Phys. 134(5-6), 979–1004 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Collet P., Eckmann J.-P.: A model of heat conduction. Commun. Math. Phys. 287(3), 1015–1038 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Croke C.B., Sharafutdinov V.A.: Spectral rigidity of a compact negatively curved manifold. Topology 37(6), 1265–1273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolgopyat D.: On decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolgopyat D.: Averaging and Invariant measures. Moscow Math. J. 5, 537–576 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Dolgopyat D., Keller G., Liverani C.: Random walk in Markovian environment. Ann. Probab. 36, 1676–1710 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolgopyat D., Liverani C.: Random walk in deterministically changing environment. Lat. Am. J. Probab. Math. Stat. 4, 89–116 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Dolgopyat D., Liverani C.: Non-perturbative approach to random walk in Markovian environment. Elect. Commun. Prob. 14, 245–251 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Eckmann J.-P., Young L.-S.: Nonequilibrium energy profiles for a class of 1-D models. Commun. Math. Phys. 262(1), 237–267 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Journé J.-L.: A regularity lemma for functions of several variables. Rev. Mat. Iberoamericana 4(2), 187–193 (1988)

    Article  MathSciNet  Google Scholar 

  18. Freidlin, M.I., Wentzell, A.D. Random perturbations of dynamical systems. Translated from the 1979 Russian original by Joseph Szcs. 2nd edition. Fundamental Principles of Mathematical Sciences, 260. New York: Springer-Verlag, 1998

  19. Gaspard P., Gilbert T.: Heat conduction and Fourier’s law in a class of many particle dispersing billiards. New J. Phys. 10, 103004 (2008)

    Article  ADS  Google Scholar 

  20. Gaspard P., Gilbert T.: Heat conduction and Fourier’s law by consecutive local mixing and thermalization. Phys. Rev. Lett. 101, 020601 (2008)

    Article  ADS  Google Scholar 

  21. Guillemin, V., Kazhdan, D.: Some inverse spectral results for negatively curved n-manifolds. Proc. Sympos. Pure Math., XXXVI. Providence, RI: Amer. Math. Soc., 1980, pp. 153–180

  22. Guo M.Z., Papanicolaou G.C., Varadhan S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118(1), 31–59 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Hunt T.J., MacKay R.S.: Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Nonlinearity 16(4), 1499–1510 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Liverani C.: On Contact Anosov flows. Ann. of Math. 159(3), 1275–1312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liverani, C., Olla, S.: Toward the Fourier law for a weakly interacting anharmonic crystal. preprint http://arXiv.org/ans/1006.2900v1 [math.PR], 2010

  26. Lukkarinen J., Spohn H.: Anomalous energy transport in the FPU-beta chain. Commun. Pure Appl. Math. 61(12), 1753–1786 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paternain G.P.: Geodesic flows. Progress in Mathematics, 180. Boston, MA, Birkhäuser Boston, Inc. (1999)

    Book  Google Scholar 

  28. Revuz D., Yor M.: Continuous Martingales and Brownian Motion, 3rd edition. Fundamental Principles of Mathematical Sciences, 293. Springer-Verlag, Berlin (1999)

    Google Scholar 

  29. Ruelle, D.: A mechanical model for Fourier’s Law of the heat conduction http://arXiv.org/abs/1102.5488 [nlin.CD], 2011

  30. Spohn H.: Large scale dynamics of interacting particles. Springer-Verlag, Berlin, New York (1991)

    MATH  Google Scholar 

  31. Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions-II. Pitman Res. Notes Math. Ser. 283. Harlow: Longman Sci. Tech., 1993, pp. 75–128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlangelo Liverani.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgopyat, D., Liverani, C. Energy Transfer in a Fast-Slow Hamiltonian System. Commun. Math. Phys. 308, 201–225 (2011). https://doi.org/10.1007/s00220-011-1317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1317-7

Keywords

Navigation