Advertisement

On the Correlation Function of the Characteristic Polynomials of the Hermitian Wigner Ensemble

  • Tatyana ShcherbinaEmail author
Article

Abstract

We consider the asymptotic of the correlation functions of the characteristic polynomials of the hermitian Wigner matrices H n  = n −1/2 W n . We show that for the correlation function of any even order the asymptotic coincides with this for the Gaussian Unitary Ensemble up to a factor, depending only on the fourth moment of the common probability law of entries \({\mathfrak{J} W_{jk}, \mathfrak{R} W_{jk}}\) , i.e. that the higher moments do not contribute to the above limit.

Keywords

Random Matrice Characteristic Polynomial Random Matrix Theory Grassmann Variable Mixed Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berezin F.A.: Introduction to the algebra and analysis of anticommuting variables. Moscow State University Publ., Moscow (1983) (Russian)Google Scholar
  2. 2.
    Brezin E., Hikami S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111–135 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Brezin E., Hikami S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223, 363–382 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Efetov K.: Supersymmetry in disorder and chaos. Cambridge University Press, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Erdos L.: Universality of Wigner random matrices: a survey of recent results. Uspekhi Mat. Nauk. 66, 67–198 (2011)Google Scholar
  6. 6.
    Gantmacher F.R.: The Theory of Matrices. Chelsea, New York (1959)zbMATHGoogle Scholar
  7. 7.
    Gotze F., Kosters H.: On the second-ordered correlation function of the characteristic polynomial of a hermitian Wigner matrix. Commun. Math. Phys. 285, 1183–1205 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Keating J.P., Snaith N.C.: Random matrix theory and ζ(1/2 +  it). Commun. Math. Phys. 214, 57–89 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Mehta M.L.: Random Matrices. Academic Press, New York (1991)zbMATHGoogle Scholar
  10. 10.
    Mehta M.L., Normand J.-M. : Moments of the characteristic polynomial in the three ensembles of random matrices. J. Phys. A: Math. Gen. 34, 4627–4639 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Pastur L.: The spectrum of random matrices. Teoret. Mat. Fiz. 10, 102–112 (1972) (Russian)MathSciNetGoogle Scholar
  12. 12.
    Polya, G., Szego, G.: Problems and theorems in analysis, Vol. II. Die Grundlehren der math. Wissenschaften. Berlin-Heidelberg-New York: Springer-Verlag, 1976Google Scholar
  13. 13.
    Strahov E., Fyodorov Y.V.: Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach. Commun. Math. Phys. 241, 343–382 (2003)MathSciNetADSzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for Low Temperature Physics Ukr.Ac.SciKharkovUkraine

Personalised recommendations