Skip to main content
Log in

Fluctuations for the Ginzburg-Landau \({\nabla \phi}\) Interface Model on a Bounded Domain

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the massless field on \({D_n = D \cap \tfrac{1}{n} \mathbf{Z}^2}\), where \({D \subseteq \mathbf{R}^2}\) is a bounded domain with smooth boundary, with Hamiltonian \({\mathcal {H}(h) = \sum_{x \sim y} \mathcal {V}(h(x) - h(y))}\). The interaction \({\mathcal {V}}\) is assumed to be symmetric and uniformly convex. This is a general model for a (2 + 1)-dimensional effective interface where h represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x) = n x · u + f(x) for \({x \in \partial D_n,\,u \in \mathbf{R}^2}\), and f : R 2R continuous. We prove that the fluctuations of linear functionals of h(x) about the tilt converge in the limit to a Gaussian free field on D, the standard Gaussian with respect to the weighted Dirichlet inner product \({(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i}\) for some explicit β = β(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of h are asymptotically described by SLE(4), a conformally invariant random curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arous G.B., Deuschel J.-D.: The construction of the (d + 1)-dimensional Gaussian droplet. Commun. Math. Phys. 179(2), 467–488 (1996)

    Article  ADS  MATH  Google Scholar 

  2. Bolthausen E., Deuschel J.-D., Giacomin G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Prob. 29(4), 1670–1692 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brascamp H., Lieb E.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Func. Anal. 22, 366–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daviaud O.: Extremes of the discrete two-dimensional Gaussian free field. Ann. Prob. 34(3), 962–986 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dembo, A., Zeitouni, O.: Large deviations: techniques and applications. Berlin-Heidelberg-NewYork: Spinger-Verlag, 1998

  6. Deuschel J.-D., Delmotte T.: On estimating the derivatives of symmetric diffusions in stationary random environments, with applications to \({\nabla \phi}\) interface model. Prob. Th. Rel. Fields 133(3), 358–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deuschel J.-D., Giacomin G.: Entropic repulsion for massless fields. Stoch. Proc. Appl 89, 333–354 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuschel J.-D., Giacomin G., Ioffe D.: Large deviations and concentration properties for \({\nabla \phi}\) interface models. Prob. Th. Rel. Fields 117, 49–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuschel J.-D., Nishikawa T.: The dynamic of entropic repulsion. Stoch. Proc. Appl. 117, 575–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, L.: Partial Differential Equations. Providence, RI: Amer. Math. Soc, 2002

  11. Funaki T.: Stochastic Interface Models. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  12. Funaki T., Sakagawa H.: Large deviations for \({\nabla \phi}\) interface model and derivation of free boundary problems. Adv. Stud. Pure Math. 39, 173–211 (2004)

    MathSciNet  Google Scholar 

  13. Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg-Landau \({\nabla \phi}\) interface model. Commun. Math. Phys. 185, 1–36 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Giacomin G., Olla S., Spohn H.: Equilibrium fluctuations for the \({\nabla \phi}\) interface model. Ann. Prob. 29, 1138–1172 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helffer B., Sjöstrand J.: On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74, 349–409 (1994)

    Article  ADS  MATH  Google Scholar 

  16. Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus. Springer, Berlin-Heidelberg-NewYork (1998)

    Google Scholar 

  17. Katznelson, Y.: An Introduction to Harmonic Analysis, Third ed. Cambridge: Cambridge University Press, 2004

  18. Kenyon R.: Dominos and the Gaussian free field. Ann. Prob. 29, 1128–1137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kipnis C., Varadhan S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Lawler, G.: Intersections of Random Walks. Basel-Boston: Birkhäuser, 1991

  21. Naddaf A., Spencer T.: On homogenization and scaling limit of some gradient perturbations of a massless free field. Commun. Math. Phys. 183(1), 55–84 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Rider, B., Virag, B.: The noise in the circular law and the Gaussian free field, http://arxiv.org/abs/math/0606663v2 [math.PR], 2006

  23. Schramm O., Schramm O., Schramm O.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheffield S.: Random Surfaces. Astérisque 304, 177 (2005)

    Google Scholar 

  25. Sheffield S.: Gaussian free fields for mathematicians. Prob. Th. Rel. Fields 139(3-4), 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stroock D., Zheng W.: Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré 33, 619–649 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Taylor, M.: Partial Differential Equations I. Applied Mathematical Sciences, Berlin-Heidelberg-NewYork: Springer-Verlag, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Miller.

Additional information

Communicated by H. Spohn

Research supported in part by NSF grants DMS-0406042 and DMS-0806211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J. Fluctuations for the Ginzburg-Landau \({\nabla \phi}\) Interface Model on a Bounded Domain. Commun. Math. Phys. 308, 591–639 (2011). https://doi.org/10.1007/s00220-011-1315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1315-9

Keywords

Navigation