Skip to main content
Log in

The Holst Action by the Spectral Action Principle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 30 May 2012

Abstract

We investigate the Holst action for closed Riemannian 4-manifolds with orthogonal connections. For connections whose torsion has zero Cartan type component we show that the Holst action can be recovered from the heat asymptotics for the natural Dirac operator acting on left-handed spinor fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agricola I., Friedrich T.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328(4), 711–748 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashtekar A.: New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ashtekar A.: New Hamiltonian formulation of general relativity. Phys. Rev. D(3) 36(6), 1587–1602 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baekler P., Hehl F.W., Nester J.M.: Poincaré gauge theory of gravity: Friedman cosmology with even and odd parity modes: Analytic part. Phys. Rev. D (3) 83, 024001 (2011)

    Article  ADS  Google Scholar 

  5. Banerjee K.: Some aspects of Holst and NiehYan terms in general relativity with torsion. Class. Quantum Grav. 27, 135012 (2010)

    Article  ADS  Google Scholar 

  6. Barbero J.F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D (3) 51(10), 5507–5510 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bleecker, D.: Gauge theory and variational principles. Global Analysis Pure and Applied Series, Reading, MA: Addison-Wesley, 1981, Unabridged republication, Mineola, NY: Dover, 2005

  8. Broda B., Szanecki M.: A relation between the Barbero-Immirzi parameter and the standard model. Phys. Lett. B 690(1), 87–89 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Cartan É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie). Ann. Éc. Norm. Sup. 40, 325–412 (1923)

    MathSciNet  Google Scholar 

  10. Cartan É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie, suite). Ann. Éc. Norm. Sup. 41, 1–25 (1924)

    MathSciNet  ADS  Google Scholar 

  11. Cartan É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (deuxième partie). Ann. Éc. Norm. Sup. 42, 17–88 (1925)

    MathSciNet  ADS  Google Scholar 

  12. Chamseddine A., Connes A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chandia O., Zanelli J.: Topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys. Rev. D (3) 55(12), 7580–7585 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chandia O., Zanelli J.: Reply to: “Comment on: ‘Topological invariants, instantons, and the chiral anomaly on spaces with torsion” by D. Kreimer and E. Mielke. Phys. Rev. D (3) 63(4), 048502 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  15. Connes A.: Noncommutative geometry. San Diego, CA: Academic Press, 1994

  16. Connes A.: Gravity coupled with matter and the foundation of noncommutative geometry. Commun. Math. Phys. 183(1), 155–176 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dubois-Violette M., Lagraa M.: Abundance of local actions for the vacuum Einstein equations. Lett. Math. Phys. 91(1), 83–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedrich, T., Sulanke, S.: Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators. Colloq. Math. 40(2), 239–247 (1978/79)

  19. Göckeler M., Schücker T.: Differential Geometry, Gauge Theories, and Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  20. Guo H.-Y., Wu K., Zhang W.: On Torsion and Nieh-Yan Form. Commun. Theor. Phys. 32, 381–386 (1999)

    MathSciNet  Google Scholar 

  21. Immirzi G.: Real and complex connections for canonical gravity. Class. Quantum Grav. 14(10), L177–L181 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.N.: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  Google Scholar 

  23. Hehl F.W., McCrea J.D.: Bianchi Identities And The Automatic Conservation Of Energy Momentum And Angular Momentum In General Relativistic Field Theories. Found. Phys. 16(3), 267–293 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hojman R., Mukku C., Sayed W.A.: Parity violation in metric torsion theories gravitation. Phys. Rev. D (3) 22(8), 1915–1921 (1980)

    Article  ADS  Google Scholar 

  25. Holst S.: Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D (3) 53(10), 5966–5969 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. Kimura, T.: Index theorems on torsional geometries. J. High Energy Phys. 2007(8), 048, 44 pp. (2007) (electronic)

  27. Kreimer D., Mielke E.W.: Comment on: “Topological invariants, instantons, and the chiral anomaly on spaces with torsion“ by o. Chanda and J. Zanelli. Phys. Rev. D (3) 63(4), 048501 (2001)

    Article  MathSciNet  Google Scholar 

  28. Lawson Jr., H:B., Michelsohn, M.-L.: Spin geometry. Princeton Mathematical Series, Princeton, NJ: Princeton University Press 1989

  29. Mercuri S.: Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter. Phys. Rev. D (3) 73(8), 084016 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  30. Nieh H.T., Yan M.L.: An identity in Riemann-Cartan geometry. J. Math. Phys. 23(3), 373–374 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Obukhov Y.N., Mielke E.W., Budczies J., Hehl F.W.: On the chiral anomaly in non-Riemannian spacetimes. Found. Phys. 27(9), 1221–1236 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. Pfäffle, F., Stephan, C.A.: On Gravity, Torsion and the Spectral Action Principle. http://arxiv.org/abs/1101.1424v3 [math ph], 2011

  33. Roe, J.: Elliptic operators, topology and asymptotic methods. Second edition. Pitman Research Notes in Mathematics Series, 395, Harlow: Longman, 1998

  34. Rovelli C.: Quantum gravity, with a foreword by James Bjorken Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  35. Shapiro I.L.: Physical Aspects of the Space-Time Torsion. Phys. Rept. 357, 113–213 (2002)

    Article  ADS  MATH  Google Scholar 

  36. Thiemann T.: Modern canonical quantum general relativity with a foreword by Chris Isham Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  37. Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian manifolds. London Math. Soc. Lecture Notes Series, Vol. 83, Cambridge: Cambridge University Press, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Stephan.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfäffle, F., Stephan, C.A. The Holst Action by the Spectral Action Principle. Commun. Math. Phys. 307, 261–273 (2011). https://doi.org/10.1007/s00220-011-1303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1303-0

Keywords

Navigation