Skip to main content
Log in

Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M × F, where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad Q.R., et al. (SNO Collaboration): Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  2. Banica T.: Le groupe quantique compact libre U(n). Commun. Math. Phys. 190, 143–172 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Banica T.: Quantum automorphism groups of small metric spaces. Pacific J. Math. 219, 27–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banica T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224, 243–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banica T., Vergnioux R.: Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier 60, 2137–2164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhowmick J., Goswami D., Skalski A.: Quantum Isometry Groups of 0-Dimensional Manifolds. Trans. AMS 363, 901–921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhowmick J., Goswami D.: Quantum Group of Orientation preserving Riemannian Isometries. J. Funct. Anal. 257, 2530–2572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhowmick J., Goswami D.: Quantum isometry groups of the Podles spheres. J. Funct. Anal. 258, 2937–2960 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhowmick J., Goswami D.: Some counterexamples in the theory of quantum isometry groups. Lett. Math. Phys. 93(3), 279–293 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bhowmick J., Skalski A.: Quantum isometry groups of noncommutative manifolds associated to group C*-algebras. J. Geom. Phys. 60(10), 1474–1489 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bichon J.: Quantum automorphism groups of finite graphs. Proc. Amer. Math. Soc. 131(3), 665–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chamseddine A.H., Connes A.: The Spectral Action Principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chamseddine A.H., Connes A.: Why the Standard Model. J. Geom. Phys. 58, 38–47 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Chamseddine A.H., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1090 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Connes A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  16. Connes A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. structuredConnes, A.: Noncommutative differential geometry and the structure of space-time. In: Proceedings of the Symposium on Geometry, Huggett, S.A. (ed.) et al., Oxford: Oxford Univ. Press, 1998, pp. 49–80

  18. Connes A.: Noncommutative geometry and the Standard Model with neutrino mixing. JHEP 11, 081 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Connes, A.: On the spectral characterization of manifolds. http://arxiv.org/abs/0810.2088v1 [math.OA], 2008

  20. Connes, A., Marcolli, M.: Noncommutative geometry, quantum fields and motives. Colloquium Publications, Vol. 55, Providence, RI: Amer. Math. Soc., 2008

  21. Coquereaux R.: On the finite dimensional quantum group \({M_3\oplus (M_{2|1}(\Lambda^2))_0}\) . Lett. Math. Phys. 42, 309–328 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. D’Andrea F., Dąbrowski L., Landi G., Wagner E.: Dirac operators on all Podleś spheres. J. Noncomm. Geom. 1, 213–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. D’Andrea F., Dąbrowski L., Landi G.: The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere. Commun. Math. Phys. 279, 77–116 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Dąbrowski L., Landi G., Paschke M., Sitarz A.: The spectral geometry of the equatorial Podleś sphere. Comptes Rendus Acad. Sci. Paris 340, 819–822 (2005)

    MathSciNet  Google Scholar 

  25. Dąbrowski L., Landi G., Sitarz A., van Suijlekom W., Várilly J.C.: The Dirac operator on SU q (2). Commun. Math. Phys. 259, 729–759 (2005)

    Article  ADS  Google Scholar 

  26. Dabrowski L., Nesti F., Siniscalco P.: A Finite Quantum Symmetry of \({M(3,{\mathbb C})}\) . Int. J. Mod. Phys. A 13, 4147–4162 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Fukuda (Super-Kamiokande Collaboration) Y. et al.: Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)

    Article  ADS  Google Scholar 

  28. Goswami D.: Quantum Group of Isometries in Classical and Noncommutative Geometry. Commun. Math. Phys. 285, 141–160 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Goswami D.: Quantum Isometry Group for Spectral Triples with Real Structure. SIGMA 6, 007 (2010)

    MathSciNet  Google Scholar 

  30. Kastler, D.: Regular and adjoint representation of SL q (2) at third root of unit. CPT internal report, 1995

  31. Lizzi F., Mangano G., Miele G., Sparano G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. Maes A., Van Daele A.: Notes on compact quantum groups. Nieuw Arch. Wisk. 16, 73–112 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Podles P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO (3 groups. Commun. Math. Phys. 170, 1–20 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Sołtan P.M.: Quantum SO(3) groups and quantum group actions on M 2. J. Noncommut. Geom. 4, 1–28 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  35. Van Daele A., Wang S.: Universal quantum groups. Int. J. Math. 7, 255–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  ADS  MATH  Google Scholar 

  37. Wang S.: Quantum Symmetry Groups of Finite Spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  ADS  MATH  Google Scholar 

  38. Wang S.: Structure and Isomorphism Classification of Compact Quantum Groups A u (Q) and B u (Q). J. Operator Theory 48, 573–583 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Wang S.: Ergodic actions of universal quantum groups on operator algebra. Commun. Math. Phys. 203(2), 481–498 (1999)

    Article  ADS  MATH  Google Scholar 

  40. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), edited by A. Connes et al., Amsterdam: Elsevier, 1998, pp. 845–884

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik Dąbrowski.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, J., D’Andrea, F. & Dąbrowski, L. Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model. Commun. Math. Phys. 307, 101–131 (2011). https://doi.org/10.1007/s00220-011-1301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1301-2

Keywords

Navigation