Skip to main content
Log in

Random Time-Dependent Quantum Walks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the discrete time unitary dynamics given by a quantum walk on the lattice \({\mathbb {Z}^d}\) performed by a quantum particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in \({\mathbb {Z}^d}\) when the sequence of unitary updates is given by an i.i.d. sequence of random matrices. When averaged over the randomness, this distribution is shown to display a drift proportional to the time and its centered counterpart is shown to display a diffusive behavior with a diffusion matrix we compute. A moderate deviation principle is also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. A generalization to unitary updates distributed according to a Markov process is also provided.

An example of i.i.d. random updates for which the analysis of the distribution can be performed without averaging is worked out. The distribution also displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix whose law we compute. A large deviation principle is shown to hold for this example. We finally show that, in general, the expectation of the random diffusion matrix equals the diffusion matrix of the averaged distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Ahlbrecht A., Vogts H., Werner A.H., Werner R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  Google Scholar 

  3. Ambainis, A., Aharonov, D., Kempe, J., Vazirani, U.: Quantum Walks on Graphs. In: Proc. 33rd ACM STOC, 2001, pp. 50–59

  4. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of SODA’05, 2005 pp. 1099–1108

  5. Asch J., Bourget O., Joye A.: Localization Properties of the Chalker-Coddington Model. Ann. H. Poincaré 11(7), 1341–1373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asch J., Duclos P., Exner P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys 92, 1053–1070 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Billingsley P.: Convergence of Probability Measures. John Wiley and Sons, New York (1968)

    MATH  Google Scholar 

  8. Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices. Commun. Math. Phys 234, 191–227 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Blatter G., Browne D.: Zener tunneling and localization in small conducting rings. Phys. Rev. B 37, 3856 (1988)

    Article  ADS  Google Scholar 

  10. Bruneau L., Joye A., Merkli M.: Infinite Products of Random Matrices and Repeated Interaction Dynamics. Ann. Inst. Henri Poincaré (B) Prob. Stat. 46, 442–464 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Chalker J.T., Coddington P.D.: Percolation, quantum tunneling and the integer Hall effect. J. Phys. C 21, 2665–2679 (1988)

    Article  ADS  Google Scholar 

  12. de Oliveira C.R., Simsen M.S.: A Floquet Operator with Purely Point Spectrum and Energy Instability. Ann. H. Poincaré 7, 1255–1277 (2008)

    Google Scholar 

  13. Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Springer, Berlin-Heidelberg-New york (1998)

    MATH  Google Scholar 

  14. Hamza E., Joye A., Stolz G.: Dynamical Localization for Unitary Anderson Models. Math. Phys., Anal. Geom. 12, 381–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamza E., Kang Y., Schenker J.: Diffusive propagation of wave packets in a fluctuating periodic potential. Lett. Math. Phys 95, 53–66 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Joye A., Merkli M.: Dynamical Localization of Quantum Walks in Random Environments. J. Stat. Phys. 140, 1025–1053 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kang Y., Schenker J.: Diffusion of wave packets in a Markov random potential. J. Stat. Phys. 134, 1005–1022 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin-Heidelberg-New York (1980)

    MATH  Google Scholar 

  19. Karski M., Förster L., Chioi J.M., Streffen A., Alt W., Meschede D., Widera A.: Quantum Walk in Position Space with Single Optically Trapped Atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  20. Keating J.P., Linden N., Matthews J.C.F., Winter A.: Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 76, 012315 (2007)

    Article  ADS  Google Scholar 

  21. Kempe J.: Quantum random walks - an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  22. Konno N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf Process 8, 387–399 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Konno, N.: Quantum Walks. In: Quantum Potential Theory. Franz, Schürmann eds., Lecture Notes in Mathematics, 1954, Berlin-Heidelberg-New York: Springer, 2009, pp. 309–452

  24. Kosk J., Buzek V., Hillery M.: Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006)

    Article  ADS  Google Scholar 

  25. Landim, C.: Central Limit Theorem for Markov Processes. In: From Classical to Modern Probability CIMPA Summer School 2001, Picco, Pierre; San Martin, Jaime (Eds.), Progress in Probability 54, Basel: Birkhaüser, 2003, pp. 147–207

  26. Lenstra D., van Haeringen W.: Elastic scattering in a normal-metal loop causing resistive electronic behavior. Phys. Rev. Lett 57, 1623–1626 (1986)

    Article  ADS  Google Scholar 

  27. Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. 20th SODA Philadelphia PA: SIAM, 2009, pp. 86–95

  28. Meyer D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    Article  ADS  MATH  Google Scholar 

  29. Pillet C.A.: Some Results on the Quantum Dynamics of a Particle in a Markovian Potential. Commun. Math. Phys. 102, 237–254 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Ryu J.-W., Hur G., Kim S.W.: Quantum Localization in Open Chaotic Systems. Phys. Rev. E 78, 037201 (2008)

    Article  ADS  Google Scholar 

  31. Santha, M.: Quantum walk based search algorithms, 5th TAMC (Xian, 2008), LNCS 4978, Berlin-Heidelberg-New York: Springer Verlag, 2008, pp. 31–46

  32. Shapira D., Biham O., Bracken A.J., Hackett M.: One dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  33. Shikano Y., Katsura H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. Shenvi N., Kempe J., Whaley K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  35. Yin Y., Katsanos D.E., Evangelou S.N.: Quantum Walks on a Random Environment. Phys. Rev. A 77, 022302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  36. Zhan X.: Matrix Inequalities. LNM 1790. Springer, Berlin-Heidelberg-New York (2002)

    Book  Google Scholar 

  37. Zähringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joye.

Additional information

Communicated by H. Spohn

Partially supported by the Agence Nationale de la Recherche, grant ANR-09-BLAN-0098-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joye, A. Random Time-Dependent Quantum Walks. Commun. Math. Phys. 307, 65–100 (2011). https://doi.org/10.1007/s00220-011-1297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1297-7

Keywords

Navigation