Skip to main content
Log in

Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a rigorous definition of quasi-normal modes for a rotating black hole. They are given by the poles of a certain meromorphic family of operators and agree with the heuristic definition in the physics literature. If the black hole rotates slowly enough, we show that these poles form a discrete subset of \({\mathbb C}\) . As an application we prove that the local energy of linear waves in that background decays exponentially once orthogonality to the zero resonance is imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys 22, 269–279 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime, http://arxiv.org/abs/0908.2265v2 [math.Ap], 2009

  3. Bachelot A.: Gravitational scattering of electromagnetic field by Schwarzschild black hole. Ann. Inst. H. Poincaré Phys. Théor. 54, 261–320 (1991)

    MathSciNet  ADS  MATH  Google Scholar 

  4. A. Bachelot, Scattering of electromagnetic field by de Sitter–Schwarzschild black hole in Non-linear hyperbolic equations and field theory. Pitman Res. Notes Math. Ser. 253, London: Pitman, 1992, pp. 23–35

  5. Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann. Inst. H. Poincaré Phys. Théor. 59, 3–68 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Ben-Artzi, M., Devinatz, A.: Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators. J. d’Analyse Math. 43, 215–250 (1983/4)

    Google Scholar 

  7. Berenger J.-P.: A perferctly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Berti E., Cardoso V., Starinets A.: Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Comm. Math. Phys. 268, 481–504 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bony, J.-F., Fujie, S., Ramond, T., Zerzeri, M.: Spectral projection, residue of the scattering amplitude, and Schrödinger group expansion for barrier-top resonances, http://arxiv.org/abs/0908.3444v1 [math.Ap], 2009

  11. Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric. Comm. Math. Phys. 282, 697–719 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Carter B.: Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Comm. Math. Phys. 10, 280–310 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves, http://arxiv.org/abs/0811.0354v1 [gr-qc], 2008

  14. Datchev, K.: Distribution of resonances for manifolds with hyperbolic ends Doctoral dissertation, University of California, Berkeley, 2010, http://math.berkeley.edu/~datchev/main.pdf

  15. Donninger R., Schlag W., Soffer A.: A proof of Price’s Law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226, 484–540 (2001)

    Article  MathSciNet  Google Scholar 

  16. Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. http://arxiv.org/abs/0911.3179v1 [math. Ap], 2009

  17. Evans, L.C., Zworski, M.: Semiclassical analysis. Lecture notes, version 0.8, http://math.berkeley.edu/~zworski/semiclassical.pdf

  18. Gérard C., Sjöstrand J.: Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys. 108, 391–421 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys. 264, 465–503 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Finster F., Kamran N., Smoller J., Yau S.-T.: Erratum: “Decay of solutions of the wave equation in the Kerr geometry”. Comm. Math. Phys. 280, 563–573 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Guillarmou C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke. Math. J. 129, 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin, Heidleberg-Newyork (1994)

    Google Scholar 

  23. Kofinti N.K.: Scattering of a Klein–Gordon particle by a black hole. Internat. J. Theoret. Phys. 23, 991–999 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kokkotas, K.D., Schmidt, B.G.: Quasi-normal modes of stars and black holes. Living Rev. Relativity 2(1999), http://www.livingreviews.org/lrr-1999-2, 1999

  25. Konoplya R.A., Zhidenko A.: High overtones of Schwarzschild-de Sitter quasinormal spectrum. JHEP 0406, 037 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. Konoplya R.A., Zhidenko A.: Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background. Phys. Rev. D 76, 084018 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Martinez A.: Resonance free domains for non globally analytic potentials. Ann. Inst. H. Poincaré 3, 739–756 (2002)

    Article  MATH  Google Scholar 

  28. Mazzeo R.R., Melrose R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazzeo R.R., Vasy A.: Resolvents and Martin boundaries of product spaces. Geom. Funct. Anal. 12, 1018–1079 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Melrose, R.B., Sá Barreto, A., Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space. http://arxiv.org/abs/0811.2229v1 [math.Ap], 2008

  31. Sá Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–121 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc. 4, 729–769 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds. http://arxiv.org/abs/0810.5766v2 [math. Ap], 2008

  34. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. http://arxiv.org/abs/0910.5290v2 [math. Ap], 2010

  35. Taylor M.: Partial Differential Equations I. Basic Theory. Springer, Berlin-Heidleberg-New York (1996)

    Google Scholar 

  36. Teukolsky S.A.: Rotating black holes: separable wave equations for gravitational and electromagnetic pertrubations. Phys. Rev. Lett. 29, 1114–1118 (1972)

    Article  ADS  Google Scholar 

  37. Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. http://arxiv.org/abs/0910.1545v1 [math.Ap], 2009

  38. Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. http://arxiv.org/abs/1003.4640v2 [math.Ap], 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Dyatlov.

Additional information

Communicated by P.T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyatlov, S. Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole. Commun. Math. Phys. 306, 119–163 (2011). https://doi.org/10.1007/s00220-011-1286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1286-x

Keywords

Navigation