Skip to main content
Log in

Chiral Equivariant Cohomology of a Point: A First Look

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The chiral equivariant cohomology contains and generalizes the classical equivariant cohomology of a manifold M with an action of a compact Lie group G. For any simple G, there exist compact manifolds with the same classical equivariant cohomology, which can be distinguished by this invariant. When M is a point, this cohomology is an interesting conformal vertex algebra whose structure is still mysterious. In this paper, we scratch the surface of this object in the case G = SU(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akman, F.: The semi-infinite Weil complex of a graded Lie algebra. Ph. D. Thesis, Yale University, 1993

  2. Borcherds R.: Vertex operator algebras, Kac-Moody algebras and the monster. Proc. Nat. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. Duflo, M., Kumar, S., Vergne, M.: Sur la Cohomologie Équivariante des Variétés Différentiables. Astérisque 215, Paris: Soc. Math. France, 1993

  4. Eck D.: Invariants of k-jet actions. Houston J. Math. 10(2), 159–168 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Ein, L., Mustata, M.: Jet schemes and singularities. Algebraic geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., 80, Part 2, Providence, RI: Amer. Math. Soc., 2009, pp. 505–546

  6. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Math. Surveys and Monographs, Vol. 88, Providence, RI: Amer. Math. Soc., 2001

  7. Feigin B., Frenkel E.: Semi-Infinite Weil Complex and the Virasoro Algebra. Commun. Math. Phys. 137, 617–639 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic Press, New York (1988)

    MATH  Google Scholar 

  9. Friedan D., Martinec E., Shenker S.: Conformal invariance, supersymmetry and string theory. Nucl. Phys. B271, 93–165 (1986)

    MathSciNet  ADS  Google Scholar 

  10. Gorelik M., Kac V.: On simplicity of vacuum modules. Adv. Math. 211, 621–677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillemin V., Sternberg S.: Supersymmetry and Equivariant de Rham Theory. Springer, Berlin-Heidelberg-NewYork (1999)

    MATH  Google Scholar 

  12. Kac, V.: Vertex Algebras for Beginners. University Lecture Series, Vol. 10. Providence, RI: Amer. Math. Soc., 1998

  13. Li H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109(2), 143–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6, 61–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lian B., Linshaw A.: Howe pairs in the theory of vertex algebras. J. Algebra 317, 111–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lian B., Linshaw A.: Chiral equivariant cohomology I. Adv. Math. 209, 99–161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lian B., Linshaw A., Song B.: Chiral equivariant cohomology II. Trans. Am. Math. Soc. 360, 4739–4776 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lian B., Linshaw A., Song B.: Chiral equivariant cohomology III. Amer. J. Math. 132(6), 1549–1590 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Lian B., Zuckerman G.J.: Commutative quantum operator algebras. J. Pure Appl. Algebra 100(1–3), 117–139 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lian B., Zuckerman G.J.: New perspectives on the BRST-algebraic structure of string theory. Comm. Math. Phys. 154, 613–646 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Perez Alvarez J.: Jet invariants of compact Lie groups. J. Geom. Phys. 57, 293–295 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Malikov F., Schechtman V., Vaintrob A.: Chiral de Rham complex. Commun. Math. Phys. 204, 439–473 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mustata M.: Jet schemes of locally complete intersection canonical singularities. Invent. Math. 145(3), 397–424 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Thielemanns K.: A Mathematica package for computing operator product expansions. Int. Mod. Phys. C2, 787 (1991)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Linshaw.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linshaw, A.R. Chiral Equivariant Cohomology of a Point: A First Look. Commun. Math. Phys. 306, 381–417 (2011). https://doi.org/10.1007/s00220-011-1284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1284-z

Keywords

Navigation