Skip to main content
Log in

Renormalization and Asymptotic Expansion of Dirac’s Polarized Vacuum

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density ρ ph including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no ‘real’ electron. We show that ρ ph admits an asymptotic expansion to any order in powers of the physical coupling constant α ph, provided that the ultraviolet cut-off behaves as \({\Lambda\sim e^{3\pi(1-Z_3)/2\alpha_{\rm ph}} \gg 1}\). The renormalization parameter 0 < Z 3 < 1 is defined by Z 3 = α ph/α, where α is the bare coupling constant. The coefficients of the expansion of ρ ph are independent of Z 3, as expected. The first order term gives rise to the well-known Uehling potential, whereas the higher order terms satisfy an explicit recursion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorken J.D., Drell S.D.: Relativistic quantum fields. McGraw-Hill Book Co., New York (1965)

    MATH  Google Scholar 

  3. Cancès É., Lewin M.: The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Rati. Mech. Anal. 197, 139–177 (2010)

    Article  MATH  Google Scholar 

  4. Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B 22, 3791–3814 (1989)

    Article  ADS  Google Scholar 

  5. Dirac P.A.: The quantum theory of the electron. II. Proc. Royal Soc. London (A) 118, 351–361 (1928)

    Article  ADS  MATH  Google Scholar 

  6. Dirac P.A.: A theory of electrons and protons. Proc. Royal Soc. London (A) 126, 360–365 (1930)

    Article  ADS  MATH  Google Scholar 

  7. Dirac, P.A.: Theory of electrons and positrons. Nobel Lecture delivered at Stockholm, 1933

  8. Dirac P.A.: Théorie du positron. Solvay report XXV, 203–212 (1934)

    Google Scholar 

  9. Dyson F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75(2), 1736–1755 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Dyson F.J.: Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 85, 631–632 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Engel, E.: Relativistic Density Functional Theory: Foundations and Basic Formalism. Vol. ‘Relativistic Electronic Structure Theory, Part 1. Fundamentals’, Schwerdtfeger ed., Amsterdam: Elsevier, 2002, ch. 10, pp. 524–624

  12. Engel E., Dreizler R.M.: Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizsäcker model. Phys. Rev. A 35, 3607–3618 (1987)

    Article  ADS  Google Scholar 

  13. Gravejat P., Lewin M., Séré É.: Ground state and charge renormalization in a nonlinear model of relativistic atoms. Commun. Math. Phys. 286, 179–215 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Greiner, W., Müller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. First ed., Texts and Monographs in Physics. Berlin-Heidelberg-NewYork: Springer-Verlag, 1985

  15. Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Hainzl C., Lewin M., Séré É.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A 38, 4483–4499 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Hainzl C., Lewin M., Séré É.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Rati. Mech. Anal. 192, 453–499 (2009)

    Article  MATH  Google Scholar 

  18. Hainzl C., Lewin M., Séré É., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007)

    Article  ADS  Google Scholar 

  19. Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics: the no-photon case. Comm. Pure Appl. Math. 60, 546–596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hainzl C., Siedentop H.: Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics. Commun. Math. Phys. 243, 241–260 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Itzykson C., Zuber J.B.: Quantum field theory. McGraw-Hill International Book Co., New York (1980)

    Google Scholar 

  22. Landau L., Pomerančuk I.: On point interaction in quantum electrodynamics. Dokl. Akad. Nauk SSSR (N.S.) 102, 489–492 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Landau, L.D.: On the quantum theory of fields. In: Niels Bohr and the development of physics, New York: McGraw-Hill Book Co., 1955, pp. 52–69

  24. Lieb E.H., Siedentop H.: Renormalization of the regularized relativistic electron-positron field. Commun. Math. Phys. 213, 673–683 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Pauli W., Rose M.: Remarks on the polarization effects in the positron theory. Phys. Rev. II 49, 462–465 (1936)

    ADS  MATH  Google Scholar 

  26. Reinhard P.-G., Greiner W., Arenhövel H.: Electrons in strong external fields. Nucl. Phys. A 166, 173–197 (1971)

    Article  ADS  Google Scholar 

  27. Seiler E., Simon B.: Bounds in the Yukawa 2 quantum field theory: upper bound on the pressure. Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  28. Serber R.: Linear modifications in the Maxwell field equations. Phys. Rev. 48(2), 49–54 (1935)

    Article  ADS  MATH  Google Scholar 

  29. Shale D., Stinespring W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)

    MathSciNet  MATH  Google Scholar 

  30. Simon, B.: Trace ideals and their applications. Vol. 35 of London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1979

  31. Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Thaller, B. The Dirac equation. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1992

  33. Uehling E.: Polarization effects in the positron theory. Phys. Rev. 48(2), 55–63 (1935)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Additional information

Communicated by I.M. Sigal

© 2011 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravejat, P., Lewin, M. & Séré, É. Renormalization and Asymptotic Expansion of Dirac’s Polarized Vacuum. Commun. Math. Phys. 306, 1–33 (2011). https://doi.org/10.1007/s00220-011-1271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1271-4

Keywords

Navigation