Skip to main content
Log in

Diffusion of a Massive Quantum Particle Coupled to a Quasi-Free Thermal Medium

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a heavy quantum particle with an internal degree of freedom moving on the d-dimensional lattice \({{\mathbb Z}^d}\) (e.g., a heavy atom with finitely many internal states). The particle is coupled to a thermal medium (bath) consisting of free relativistic bosons (photons or Goldstone modes) through an interaction of strength λ linear in creation and annihilation operators. The mass of the quantum particle is assumed to be of order λ−2, and we assume that the internal degree of freedom is coupled “effectively” to the thermal medium. We prove that the motion of the quantum particle is diffusive in d ≥ 4 and for λ small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alicki R., Fannes M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)

    Book  MATH  Google Scholar 

  2. Araki H., Woods E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bach V., Fröhlich J., Sigal I.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Brattelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: 2. Berlin: Springer-Verlag, 2nd edition, 1996

  5. Bricmont, J., Kupiainen, A.: Diffusion in Energy Conserving Coupled Maps, http://arxiv.org/abs/1102.3831

  6. Bryc W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. and Prob. Lett. 18, 253–256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bunimovich L.A., Sinai Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun Math. Phys. 78, 479–497 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Clark, J., De Roeck,W., Maes, C.: Diffusive behaviour from a quantum master equation. http://arXiv.org/abs0812.2858v3 [math-ph], 2008

  9. Davies E.B.: Linear Operators and their spectra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  MATH  ADS  Google Scholar 

  11. Dereziński J.: Introduction to Representations of Canonical Commutation and Anticommutation. Relations Volume 695 of Lecture Notes in Physics. Springer-Verlag, Berlin (2006)

    Google Scholar 

  12. Dereziński J., Früboes R.: Fermi golden rule and open quantum systems. In: Attal, S., Joye, A., Pillet, C.-A. (eds) Lecture notes Grenoble Summer School on Open Quantum Systems. Lecture Notes in Mathematics. Vol. 118, pp. 67–116. Springer, Berlin (2003)

    Google Scholar 

  13. Dereziński J., Jakšić V.: Return to equilibrium for Pauli-Fierz systems. Ann. H. Poincaré 4, 739–793 (2003)

    Article  MATH  Google Scholar 

  14. De Roeck W.: Large deviation generating function for currents in the Pauli-Fierz model. Rev. Math. Phys. 21(4), 549–585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. De Roeck W., Fröhlich J., Pizzo A.: Quantum Brownian motion in a simple model system. Commun. Math. Phys. 293(2), 361–398 (2010)

    Article  MATH  ADS  Google Scholar 

  16. De Roeck, W., Spehner, D.: Derivation of the quantum master equation for massive tracer particles. In preparation

  17. Disertori M., Spencer T., Zirnbauer M.: Quasi-diffusion in a 3d supersymmetric hyperbolic sigma model. Commun. Math. Phys. 300, 435–486 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Erdös L.: Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. J. Stat. Phys. 107(85), 1043–1127 (2002)

    Article  MATH  ADS  Google Scholar 

  19. Erdös L., Salmhofer M., Yau H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit ii. the recollision diagrams. Commun. Math. Phys 271, 1–53 (2007)

    Article  MATH  ADS  Google Scholar 

  20. Erdös L., Salmhofer M., Yau H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit i. the non-recollision diagrams. Acta Mathematica 200, 211–277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Erdös L., Yau H.-T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53(6), 667–735 (2000)

    Article  MATH  Google Scholar 

  22. Evans, L.C.: Partial Differential Equations (Graduate Studies in Mathematics, V. 19) GSM/19. Providence, RI: Amer. Math. Soc., 1998

  23. Frigerio A.: Stationary states of quantum dynamical semigroups. Commun. Math. Phys. 63(3), 269–276 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Fröhlich J., Merkli M.: Another return of ‘return to equilibrium’. Commun. Math. Phys. 251, 235–262 (2004)

    Article  MATH  ADS  Google Scholar 

  25. Holevo A.S.: A note on covariant dynamical semigroups. Rep. Math. Phys. 32, 211–216 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jakšić V., Pillet C.-A.: On a model for quantum friction. iii: Ergodic properties of the spin-boson system. Commun. Math. Phys. 178, 627–651 (1996)

    Article  MATH  ADS  Google Scholar 

  27. Kang Y., Schenker J.: Diffusion of wave packets in a Markov random potential. J. Stat. Phys. 134, 1005–1022 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kato, T.: Perturbation Theory for Linear Operators. Berlin: Springer, second edition 1976

  29. Knauf A.: Ergodic and topological properties of coulombic periodic potentials. Commun. Math. Phys. 110(1), 89–112 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Komorowski T., Ryzhik L.: Diffusion in a weakly random hamiltonian flow. Commun. Math. Phys 263, 277–323 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Lebowitz J., Spohn H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)

    Article  Google Scholar 

  32. Ovchinnikov A.A., Erikhman N.S.: Motion of a quantum particle in a stochastic medium. Sov. Phys.-JETP 40, 733–737 (1975)

    ADS  Google Scholar 

  33. Spohn H.: An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33–38 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Vacchini B., Hornberger K.: Quantum linear boltzmann equation. Phys. Rept. 478, 71–120 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Van Hove L.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21, 517–540 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. De Roeck.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Roeck, W., Fröhlich, J. Diffusion of a Massive Quantum Particle Coupled to a Quasi-Free Thermal Medium. Commun. Math. Phys. 303, 613–707 (2011). https://doi.org/10.1007/s00220-011-1222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1222-0

Keywords

Navigation