Skip to main content
Log in

Deformations of Quantum Field Theories on Spacetimes with Killing Vector Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincaré transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J.: A gravity theory on noncommutative spaces. Class. Quant. Grav. 22, 3511–3532 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Araki H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. Kyoto 6, 385–442 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Araki, H.: Mathematical Theory of Quantum Fields. Int. Series of Monographs on Physics. Oxford: Oxford University Press, 1999

  4. Borchers H.-J., Buchholz D.: Global properties of vacuum states in de Sitter space. Annales Poincare Phys. Theor. A70, 23–40 (1999)

    MathSciNet  Google Scholar 

  5. Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. http://arxiv.org/abs/1005.2130v1 [hepth], 2010

  6. Buchholz D., Dreyer O., Florig M., Summers S.J.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Blaschke D., Gieres F., Kronberger E., Schweda M., Wohlgenannt M.: Translation-invariant models for non-commutative gauge fields. J.Phys.A 41, 252002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bieliavsky, P.: Deformation quantization for actions of the affine group. http://arxiv.org/abs/1011.2370v1 [math.Q4], 2010,

  10. Buchholz, D., Lechner, G., Summers, S.J.: Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories. Commun. Math. Phys. (2010). doi:10.1007/s00220-010-1137-1

  11. Buchholz D., Mund J., Summers S.J.: Transplantation of Local Nets and Geometric Modular Action on Robertson-Walker Space-Times. Fields Inst. Commun. 30, 65–81 (2001)

    MathSciNet  Google Scholar 

  12. Borchers H.-J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Borchers H.-J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604–3673 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Borchers, H.-J.: On the Net of von Neumann algebras associated with a Wedge and Wedge-causal Manifolds. Preprint (2009), available at http://www.theorie.physik.uni-goettingen.de/forschung/qft/publications/ 2009

  15. Balachandran A.P., Pinzul A., Qureshi B.A., Vaidya S.: S-Matrix on the Moyal Plane: Locality versus Lorentz Invariance. Phys. Rev. D 77, 025020 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Berlin, Heidelberg-New York: Springer, 1997

  17. Buchholz D., Summers S.J.: Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties. J. Math. Phys. 45, 4810–4831 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  19. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Buchholz D., Summers S.J.: String- and brane-localized fields in a strongly nonlocal model. J. Phys. A40, 2147–2163 (2007)

    MathSciNet  ADS  Google Scholar 

  21. Buchholz D., Summers S.J.: Warped Convolutions: A Novel Tool in the Construction of Quantum Field Theories. In: Seiler, E., Sibold, K. (eds) Quantum Field Theory and Beyond: Essays in Honor of Wolfhart Zimmermann, pp. 107–121. World Scientific, River Edge, NJ (2008)

    Chapter  Google Scholar 

  22. Bisognano J.J., Wichmann E.H.: On the Duality Condition for a Hermitian Scalar Field. J. Math. Phys. 16, 985–1007 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Chandrasekhar S., Ferrari V.: On the Nutku-Halil solution for colliding impulsive gravitational waves. Proc. Roy. Soc. Lond. A396, 55 (1984)

    MathSciNet  ADS  Google Scholar 

  24. Chandrasekhar S.: The mathematical theory of black holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  25. Doplicher S., Fredenhagen K., Roberts J.E.: The Quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Dappiaggi C., Hack T.-P., Pinamonti N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241–1312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doplicher S., Haag R., Roberts J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Dimock J.: Dirac quantum fields on a manifold. Trans. Amer. Math. Soc. 269(1), 133–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dixmier J.: C*-Algebras. North-Holland-Publishing Company, Amsterdam-New York-Oxford (1977)

    MATH  Google Scholar 

  30. Estrada R., Gracia-Bondia J.M., Varilly J.C.: On Asymptotic expansions of twisted products. J. Math. Phys. 30, 2789–2796 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Ellis G.F.R.: The Bianchi models: Then and now. Gen. Rel. Grav. 38, 1003–1015 (2006)

    Article  ADS  MATH  Google Scholar 

  32. Foit J.J.: Abstract Twisted Duality for Quantum Free Fermi Fields. Publ. Res. Inst. Math. Sci. Kyoto 19, 729–741 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fulling S.A., Parker L., Hu B.L.: Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization. Phys. Rev. D10, 3905–3924 (1974)

    MathSciNet  ADS  Google Scholar 

  34. Fewster C.J., Verch R.: A quantum weak energy inequality for Dirac fields in curved spacetime. Commun. Math. Phys. 225, 331–359 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Geroch R.P.: Spinor structure of space-times in general relativity. I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Geroch R.P.: Spinor structure of space-times in general relativity II. J. Math. Phys. 11, 343–348 (1970)

    Article  ADS  MATH  Google Scholar 

  37. Gayral V., Gracia-Bondia J.M., Iochum B., Schucker T., Varilly J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Grosse H., Lechner G.: Wedge-Local Quantum Fields and Noncommutative Minkowski Space. JHEP 11, 012 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. Grosse H., Lechner G.: Noncommutative Deformations of Wightman Quantum Field Theories. JHEP 09, 131 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grosse H., Wulkenhaar R.: Renormalisation of phi 4 theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Haag, R.: Local Quantum Physics - Fields, Particles, Algebras. Berlin, Heidelberg-New York: Springer, 2nd-edition, 1996

  43. Kay B.S.: The double-wedge algebra for quantum fields on Schwarzschild and Minkowski space-times. Commun. Math. Phys. 100, 57 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Keyl M.: Causal spaces, causal complements and their relations to quantum field theory. Rev. Math. Phys. 8, 229–270 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Lauridsen-Ribeiro, P.: Structural and Dynamical Aspects of the AdS/CFT Correspondence: a Rigorous Approach. PhD thesis, Sao Paulo, 2007, available at http://arxiv.org/abs/0712.0401v3 [math-ph], 2008

  46. Longo, R., Witten, E.: An Algebraic Construction of Boundary Quantum Field Theory. Commun. Math. Phys. (2010). doi:10.1007/s00220-010-1133-5

  47. Mukhanov V.F., Feldman H.A., Brandenberger R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  48. Morfa-Morales, E.: Work in progress

  49. O’Neill B.: Semi-Riemannian Geometry. Academic Press, London-New York (1983)

    MATH  Google Scholar 

  50. Ohl T., Schenkel A.: Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes. Gen. Rel. Grav. 42, 2785–2798 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. G.K. Pedersen. C*-Algebras and their Automorphism Groups. Academic Press, 1979

  52. Paschke M., Verch R.: Local covariant quantum field theory over spectral geometries. Class. Quant. Grav. 21, 5299–5316 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Rehren K.-H.: Algebraic Holography. Ann. Henri Poincaré 1, 607–623 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Rieffel, M.A.: Deformation Quantization for Actions of R d. Volume 106 of Memoirs of the Amerian Mathematical Society. Providence, RI: Amer. Math. Soc., 1992

  55. Sanders, K.: Aspects of locally covariant quantum field theory. PhD thesis, University of York, September, 2008, available at http://arxiv.org/abs/0809.4828v1 [math-ph], 2008

  56. Sanders K.: On the Reeh-Schlieder Property in Curved Spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  ADS  MATH  Google Scholar 

  57. Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22(4), 381–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Soloviev M.A.: On the failure of microcausality in noncommutative field theories. Phys. Rev. D77, 125013 (2008)

    MathSciNet  ADS  Google Scholar 

  59. Steinacker H.: Emergent Gravity from Noncommutative Gauge Theory. JHEP 0712, 049 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  60. Strich R.: Passive States for Essential Observers. J. Math. Phys. 49(022301), (2008)

  61. Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207–299 (2003)

    Article  ADS  MATH  Google Scholar 

  62. Taylor M.E.: Noncommutative Harmonic Analysis. Amer. Math. Soc., Providence, RI (1986)

    MATH  Google Scholar 

  63. Thomas L.J., Wichmann E.H.: On the causal structure of Minkowski space-time. J. Math. Phys. 38, 5044–5086 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Wald R.M.: General Relativity. University of Chicago Press, Chicago, IL (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dappiaggi, C., Lechner, G. & Morfa-Morales, E. Deformations of Quantum Field Theories on Spacetimes with Killing Vector Fields. Commun. Math. Phys. 305, 99–130 (2011). https://doi.org/10.1007/s00220-011-1210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1210-4

Keywords

Navigation