Advertisement

Communications in Mathematical Physics

, Volume 303, Issue 2, pp 331–359 | Cite as

Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroids and Gauge Theory

  • Anton M. ZeitlinEmail author
Article

Abstract

We define a quasiclassical limit of the Lian-Zuckerman homotopy BV algebra (quasiclassical LZ algebra) on the subcomplex, corresponding to “light modes”, i.e. the elements of zero conformal weight, of the semi-infinite (BRST) cohomology complex of the Virasoro algebra associated with vertex operator algebra (VOA) with a formal parameter. We also construct a certain deformation of the BRST differential parametrized by a constant two-component tensor, such that it leads to the deformation of the A -subalgebra of the quasiclassical LZ algebra. Altogether this gives a functor the category of VOA with a formal parameter to the category of A -algebras. The associated generalized Maurer-Cartan equation gives the analogue of the Yang-Mills equation for a wide class of VOAs. Applying this construction to an example of VOA generated by β - γ systems, we find a remarkable relation between the Courant algebroid and the homotopy algebra of the Yang-Mills theory.

Keywords

Gauge Theory Conformal Weight Vertex Algebra Ghost Number Double Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks T., Nemeshansky D., Sen A.: Dilaton coupling and BRST quantization of bosonic strings. Nucl. Phys. B277, 67–86 (1986)CrossRefADSGoogle Scholar
  2. 2.
    Barannikov S., Kontsevich M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. IMRN 4, 201–215 (1998)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Berkovits N., Schnabl M.: Yang-Mills Action from Open Superstring Field Theory. JHEP 0309, 022 (2003)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bressler P.: The first Pontryagin class. Compositio Math. 143, 1127–1163 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Callan C.G., Friedan D., Martinec E.J., Perry M.J.: Nucl. Phys. B262, 593–609 (1985)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Callan C.G., Klebanov I.R., Perry M.J.: Nucl. Phys. B278, 78–90 (1986)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Coletti E., Sigalov I., Taylor W.: Abelian and Nonabelian Vector Field Effective Actions from String Field Theory. JHEP 0309, 050 (2003)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Fradkin E.S., Tseytlin A.A.: Quantum String Theory Effective Action. Nucl. Phys. B261, 1–27 (1985)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Fradkin E.S., Tseytlin A.A.: Non-linear electrodynamics from quantized strings. Phys. Lett. B163, 123–130 (1985)ADSMathSciNetGoogle Scholar
  10. 10.
    Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs 88, Providence, RI: Amer. Math. Soc., 2001Google Scholar
  11. 11.
    Frenkel I.B., Garland H., Zuckerman G.J.: Semi-infinite cohomology and string theory. Proc. Nat. Acad. Sci. 83, 8442–8446 (1986)CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approach to vertex operator algebras and modules. Memoirs of AMS 494, Providence, RI: Amer. Math. Soc., 1993Google Scholar
  13. 13.
    Galves, I., Gorbounov, V., Tonks, A.: Homotopy Gerstenhaber Structures and Vertex Algebras. http://arxiv.org/abs/math/0611231v2 [math.QA], 2008
  14. 14.
    Galvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. http://arxiv.org/abs/0907.2246v2 [math.QA], 2010
  15. 15.
    Getzler, E., Jones, J.: Operads, homotopy algebras and iterated integrals for double loop spaces. http://arxiv.org/abs/hep-th/9403055vL, 1994
  16. 16.
    Gorbounov V., Malikov F., Schechtman V.: Gerbes of chiral differential operators. II. Invent. Math. 155(3), 605–680 (2004)CrossRefzbMATHADSMathSciNetGoogle Scholar
  17. 17.
    Halmagyi, N.: Non-geometric Backgrounds and the First Order String Sigma Model. http://arxiv.org/abs/0906.2891vL [hep-th], 2009
  18. 18.
    Huang Y.-Z., Zhao W.: Semi-infinite forms and topological vertex operator algebras. Comm. Contemp. Math. 2, 191–241 (2000)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Hull, C., Zwiebach, B.: Double Field Theory. The gauge algebra of double field theory and Courant brackets. JHEP 0909, 090 (2009)Google Scholar
  20. 20.
    Kimura, T., Voronov, T.A., Zuckerman, G.J.: Homotopy Gerstenhaber algebras and topological field theory. http://arxiv.org/abs/q-alg/9602009v2 , 1996
  21. 21.
    Lian B., Zuckerman G.: New Perspectives on the BRST-algebraic structure of String Theory. Commun. Math. Phys. 154, 613–646 (1993)CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    Linshaw A.R.: The Cohomology Algebra of the Semi-infinite Weil Complex. Commun. Math. Phys. 267, 13–23 (2006)CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. 23.
    Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie Bialgebroids. J. Diff. Geom. 45, 547–574 (1997)MathSciNetGoogle Scholar
  24. 24.
    Losev A.S., Marshakov A., Zeitlin A.M.: On the First Order Formalism in String Theory. Phys. Lett. B633, 375–381 (2006)ADSMathSciNetGoogle Scholar
  25. 25.
    Malikov F.: Lagrangian approach to sheaves of vertex algebras. Commun.Math.Phys. 278, 487–548 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    Malikov F., Shechtman V., Vaintrob A.: Chiral de Rham Complex. Commun. Math. Phys. 204, 439–473 (1999)CrossRefzbMATHADSGoogle Scholar
  27. 27.
    Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs 96, Providence, RI: Amer. Math. Soc., 2002Google Scholar
  28. 28.
    Polchinski J.: String Theory. Volume 1. Cambridge Univ. press, Cambridge (1998)CrossRefGoogle Scholar
  29. 29.
    Polyakov A.M.: Gauge Fields and Strings. London-Paris-Newyork, Harwood Academic Publishers (1987)Google Scholar
  30. 30.
    Roytenberg, D.: Courant algebroids, derived brackets, and even symplectic supermanifolds, PhD thesis, UC Berkeley, 1999Google Scholar
  31. 31.
    Roytenberg D.: Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61, 123–137 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Roytenberg D., Weinstein A.: Courant Algebroids and Strongly Homotopy Lie Algebras. Lett. Math. Phys. 46, 81–93 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Sen A.: On the Background Independence of String Field Theory. Nucl. Phys. B345, 551–583 (1990)CrossRefADSGoogle Scholar
  34. 34.
    Stasheff J.D.: Homotopy Associativity of H-spaces I, II. Trans. Amer. Math. Sot. 108, 275–312 (1963)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Tamarkin D., Tsygan B.: Noncommutative differential calculus, homotopy BV algebras and formality conjectures. Methods Funct. Anal. Topology 6(2), 85–97 (2000)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Witten E.: Noncommutative Geometry and String Field Theory. Nucl. Phys. B268, 253–294 (1986)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Witten, E.: Two-Dimensional Models With (0,2) Supersymmetry: Perturbative Aspects. http://arxiv.org/abs/hep-th/0504078v3, 2006
  38. 38.
    Witten E., Zwiebach B.: Algebraic Structures and Differential Geometry in 2D String Theory. Nucl. Phys. B377, 55 (1992)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Zeitlin A.M.: Homotopy Lie Superalgebra in Yang-Mills Theory. JHEP 0709, 068 (2007)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Zeitlin A.M.: BV Yang-Mills as a Homotopy Chern-Simons via SFT. Int. J. Mod. Phys. A24, 1309–1331 (2009)ADSMathSciNetGoogle Scholar
  41. 41.
    Zeitlin A.M.: SFT-inspired Algebraic Structures in Gauge Theories. J. Math. Phys 50, 063501–063520 (2009)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Zeitlin A.M.: Conformal Field Theory and Algebraic Structure of Gauge Theory. JHEP 03, 056 (2010)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Zeitlin A.M.: Perturbed Beta-Gamma Systems and Complex Geometry. Nucl. Phys. B794, 381 (2008)CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Zeitlin A.M.: Formal Maurer-Cartan Structures: from CFT to Classical Field Equations. JHEP 0712, 098 (2007)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Zeitlin A.M.: BRST, Generalized Maurer-Cartan Equations and CFT. Nucl. Phys. B759, 370–398 (2006)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Zeitlin A.M.: Beta-gamma systems and the deformations of the BRST operator. J. Phys. A42, 355401 (2009)MathSciNetGoogle Scholar
  47. 47.
    Zeitlin, A.M.: On the BV double of the Courant algebroid. In progressGoogle Scholar
  48. 48.
    Zeitlin, A.M.: Beta-function from an algebraic point of view. In progressGoogle Scholar
  49. 49.
    Zwiebach B.: Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B390, 33–152 (1993)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations