Skip to main content
Log in

Concentration of Measure for Quantum States with a Fixed Expectation Value

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given some observable H on a finite-dimensional quantum system, we investigate the typical properties of random state vectors \({|\psi\rangle}\) that have a fixed expectation value \({\langle\psi|H|\psi\rangle=E}\) with respect to H. Under some conditions on the spectrum, we prove that this manifold of quantum states shows a concentration of measure phenomenon: any continuous function on this set is almost everywhere close to its mean. We also give a method to estimate the corresponding expectation values analytically, and we prove a formula for the typical reduced density matrix in the case that H is a sum of local observables. We discuss the implications of our results as new proof tools in quantum information theory and to study phenomena in quantum statistical mechanics. As a by-product, we derive a method to sample the resulting distribution numerically, which generalizes the well-known Gaussian method to draw random states from the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Spencer J.H.: The probabilistic method. Wiley, Newyork (2000)

    Book  MATH  Google Scholar 

  2. Lloyd S., Pagels H.: Complexity as thermodynamic depth. Ann. Phys. 188, 186 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Hayden P., Leung D.W., Shor P.W., Winter A.: Randomizing quantum states: Constructions and applications. Commun. Math. Phys. 250, 371 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Horodecki M., Oppenheim J., Winter A.: Quantum information can be negative. Nature 436, 673 (2005)

    Article  ADS  Google Scholar 

  6. Hastings M.B.: A counterexample to additivity of minimum output entropy. Nature Phys. 5, 255 (2009)

    Article  ADS  Google Scholar 

  7. Gross D., Flammia S.T., Eisert J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bremner M.J., Mora C., Winter A.: Are random pure states useful for quantum computation. Phys. Rev. Lett. 102, 190502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Goldstein S., Lebowitz J.L., Tumulka R., Zanghi N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Popescu S., Short A.J., Winter A.: Entanglement and the foundations of statistical mechanics. Nature Phys. 2, 754 (2006)

    Article  ADS  Google Scholar 

  11. Reimann P.: Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  12. Gogolin C.: Einselection without pointer states. Phys. Rev. E 81, 051127 (2010)

    Article  ADS  Google Scholar 

  13. Srednicki M.: Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  14. Garnerone S., de Oliveira T.R., Zanardi P.: Typicality in random matrix product states. Phys. Rev. A 81, 032336 (2010)

    Article  ADS  Google Scholar 

  15. Kollath C., Läuchli A., Altman E.: Quench dynamics and non equilibrium phase diagram of the Bose-Hubbard model. Phys. Rev. B 74, 174508 (2006)

    Article  Google Scholar 

  16. Rigol M., Dunjko V., Yurovsky V., Olshanii M.: Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  17. Cramer M., Dawson C.M., Eisert J., Osborne T.J.: Exact relaxation in a class of non-equilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008)

    Article  ADS  Google Scholar 

  18. Linden, N., Popescu, S., Short, A.J., Winter, A.: On the speed of fluctuations around thermodynamic equilibrium. http://arXiv.org/abs/0907.1267v1 [quant-ph], 2009

  19. Brody D.C., Hook D.W., Hughston L.P.: Quantum phase transitions without thermodynamic limits. Proc. R. Soc. A 463, 2021 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Bender C.M., Brody D.C., Hook D.W.: Solvable model of quantum microcanonical states. J. Phys. A 38, L607 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Fresch B., Moro G.J.: Typicality in ensembles of quantum states: Monte Carlo sampling versus analytical approximations. J. Phys. Chem. A 113, 14502 (2009)

    Article  Google Scholar 

  22. Jiang, Z., Chen, Q.: Understanding Statistical Mechanics from a Quantum Point of View. In preparation

  23. Federer H.: Geometric measure theory. Springer-Verlag, Berlin-Heidelberg-New York (1969)

    MATH  Google Scholar 

  24. Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs 89, Providence, RI: Amer. Math. Soc., 2001

  25. Cover T.M., Thomas J.M.: Elements of information theory, Second Edition. Wiley, New York (2006)

    Google Scholar 

  26. Gromov, M.: Metric structures for Riemannian and Non-Riemannian spaces. Modern Birkhäuser Classics, Basel-Boston: Birkhäuser, 2007

  27. Zyckowski K., Sommers H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A 34(35), 7111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hall M.: Random quantum correlations and density operator distributions. Phys. Lett. A 242, 123 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Bhatia R.: Matrix analysis. Springer, Berlin-Heidelberg-New York (1997)

    Book  Google Scholar 

  30. Santaló L.A.: Integral geometry and geometric probability. Addison-Wesley, Reading, MA (1972)

    Google Scholar 

  31. Tasaki H.: Geometry of reflective submanifolds in Riemannian symmetric spaces. J. Math. Soc. Japan 58(1), 275–297 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schneider R., Weil W.: Stochastic and integral geometry. Springer, Reading, MA (2008)

    Book  MATH  Google Scholar 

  33. Funano K.: Concentration of 1-Lipschitz Maps into an infinite dimensional p-ball with the q-distance function. Proc. Amer. Math. Soc. 137, 2407 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Funano K.: Observable concentration of mm-spaces into nonpositively curved manifolds. Geometriae Dedicata 127, 49 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Elstrodt J.: Maß–und Integrationstheorie. Springer, Reading, MA (1996)

    MATH  Google Scholar 

  36. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics 1200. Reading, MA: Springer, 2001

  37. Blumenson L.E.: A derivation of n-dimensional spherical coordinates.. American Mathematical Monthly 67(1), 63 (1960)

    Article  MathSciNet  Google Scholar 

  38. Bengtsson I., Zyczkowski K.: Geometry of quantum states - an introduction to quantum entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  39. Dempster A.P., Kleyle R.M.: Distributions determined by cutting a simplex with hyperplanes. Ann. Math. Stat. 39(5), 1473 (1968)

    MATH  MathSciNet  Google Scholar 

  40. Barvinok: Measure concentration in optimization. Springer, Reading, MA (2007)

    Google Scholar 

  41. Furuta T.: Short proof that the arithmetic mean is greater than the harmonic mean and its reverse inequality. Math Ineq and Appl. 8(4), 751 (2005)

    MATH  MathSciNet  Google Scholar 

  42. Müller M.E.: A note on a method for generating points uniformly on N-dimensional spheres. Comm. Assoc. Comput. Mach. 2, 19 (1959)

    Google Scholar 

  43. Marsaglia G.: Choosing a point from the surface of a sphere. The Annals of Mathematical Statistics 43(2), 645 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gross.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.P., Gross, D. & Eisert, J. Concentration of Measure for Quantum States with a Fixed Expectation Value. Commun. Math. Phys. 303, 785–824 (2011). https://doi.org/10.1007/s00220-011-1205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1205-1

Keywords

Navigation