Skip to main content
Log in

Global Structure of Quaternion Polynomial Differential Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we mainly study the global structure of the quaternion Bernoulli equations \({\dot q=aq+bq^n}\) for \({q\in {\mathbb{H}}}\), the quaternion field and also some other form of cubic quaternion differential equations. By using the Liouvillian theorem of integrability and the topological characterization of 2–dimensional torus: orientable compact connected surface of genus one, we prove that the quaternion Bernoulli equations may have invariant tori, which possesses a full Lebesgue measure subset of \({{\mathbb{H}}}\). Moreover, if n = 2 all the invariant tori are full of periodic orbits; if n = 3 there are infinitely many invariant tori fulfilling periodic orbits and also infinitely many invariant ones fulfilling dense orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E.: Foundations of Mechanics. 2nd Ed. Redwood City, CA, Addison–Wesley (1987)

    Google Scholar 

  2. Adler S.L.: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611–656 (1986)

    Article  MATH  ADS  Google Scholar 

  3. Adler S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  4. Álvarez M.J., Gasull A., Prohens R.: Configurations of critical points in complex polynomial differential equations. Nonlin. Anal. 71, 923–934 (2009)

    Article  MATH  Google Scholar 

  5. Arnold V.I.: Mathematial Methods of Classical Mechanics. Springer-Verlag, New York (1978)

    Google Scholar 

  6. Bruschi M., Calogero F.: Integrable systems of quartic oscillators. II. Phys. Lett. A 327, 320–326 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Calogero F., Degasperis A.: New integrable PDEs of boomeronic type. J. Phys. A 39, 8349–8376 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Calogero F., Degasperis A.: New integrable equations of nonlinear Schrödinger type. Stud. Appl. Math 113, 91–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen C., Cao J., Zhang X.: The topological structure of the Rabinovich system having an invariant algebraic surface. Nonlinearity 21, 211–220 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Campos J., Mawhin J.: Periodic solutions of quaternionic-values ordinary differential equations. Ann. di Mat. 185, S109–S127 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cima A., Gasull A., Mañosa V.: Some properties of the k–dimensional Lyness’s map. J. Phys. A: Math. Theor. 41, 285205 (2008)

    Article  Google Scholar 

  12. Finkelstein D., Jauch J.M., Schiminovich S., Speiser D.: Foundations of quaternion quantum mechanics . J. Math. Phys. 3, 207–220 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  13. Frobenius F.G.: Ueber lineare Substitutionen und bilineare Formen. J. Reine Angew. Math 84, 1–63 (1878)

    Article  Google Scholar 

  14. Gasull A., Llibre J., Mãosa V., Mãosas F.: The focus-centre problem for a type of degenerate system. Nonlinearity 13, 699–729 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gasull A., Llibre J., Zhang X.: One–dimensional quaternion homogeneous polynomial differential equations. J. Math. Phys. 50, 082705 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gibbon J.D.: A quaternionic structure in the three–dimensional Euler and ideal magneto–hydrodynamics equation. Physica D 166, 17–28 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Gibbon J.D., Holm D.D., Kerr R.M., Roulstone I.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Giné J., Llibre J.: Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities. J. Diff. Eqs. 197, 147–161 (2004)

    Article  MATH  Google Scholar 

  19. Hamilton S.W.R.: Lectures on Quaternions. Royal Irish Academy, Dublin, Hodges and Smith (1853)

    Google Scholar 

  20. Hanson A.J.: Quaternions. Elsevier, San Francisco (2006)

    Google Scholar 

  21. Iona S., Calogero F.: Integrable systems of quartic oscillators in ordinary (three-dimensional) space. J. Phys. A 35, 3091–3098 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Lang S.: Differential and Riemannian Manifolds. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  23. Li C., Li W., Llibre J., Zhang Z.: On the limit cycles of polynomial differential systems with homogeneous nonlinearities. Proc. Edinburgh Math. Soc. 43(2), 529–543 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Llibre J.: Handbook of Differential Equations, pp. 437–532. Elsevier/North–Holland, Amsterdam (2004)

    Google Scholar 

  25. Llibre J., Valls C.: Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities. J. Diff. Eqs. 246, 2192–2204 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Llibre J., Yu J.: On the periodic orbits of the static, spherically symmetric Einstein-Yang-Mills equations. Commun. Math. Phys. 286, 277–281 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Llibre J., Zhang X.: Invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622–1645 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Llibre J., Zhang X.: Darboux theory of integrability in C n taking into account the multiplicity. J. Diff. Eqs. 246, 541–551 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Roubtsov V.N., Roulstone I.: Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow. J. Phys. A: Math. Gen. 30, L63–L68 (1997)

    Article  ADS  Google Scholar 

  30. Roubtsov V.N., Roulstone I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow. Proc. R. Soc. London A 457, 1519–1531 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Wilczynski P.: Quaternionic–valued ordinary differential equations. The Riccati equation. J. Diff. Eqs. 247, 2163–2187 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Additional information

Communicated by G. Gallavotti

The author is partially supported by NNSF of China grant 10831003 and Shanghai Pujiang Program grant 09PJD013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Global Structure of Quaternion Polynomial Differential Equations. Commun. Math. Phys. 303, 301–316 (2011). https://doi.org/10.1007/s00220-011-1196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1196-y

Keywords

Navigation