Advertisement

Communications in Mathematical Physics

, Volume 303, Issue 2, pp 317–330 | Cite as

QP-Structures of Degree 3 and 4D Topological Field Theory

  • Noriaki IkedaEmail author
  • Kyousuke Uchino
Article

Abstract

A BV algebra and a QP-structure of the degree 3 is formulated. A QP-structure of degree 3 gives rise to Lie algebroids up to homotopy and its algebraic and geometric structure is analyzed. A new algebroid is constructed, which derives a new topological field theory in 4 dimensions by the AKSZ construction.

Keywords

Vector Bundle Poisson Bracket Jacobi Identity Ghost Number Quantum Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batalin I.A., Vilkovisky G.A.: Phys. Lett B 102, 27 (1981)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Batalin I.A., Vilkovisky G.A.: Phys. Rev D 28, 2567 (1983)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Schwarz A.S.: Commun. Math. Phys 155, 249 (1993)CrossRefzbMATHADSGoogle Scholar
  4. 4.
    Schwarz A.S.: Commun. Math. Phys 158, 373 (1993)CrossRefADSGoogle Scholar
  5. 5.
    Alexandrov M., Kontsevich M., Schwartz A., Zaboronsky O.: Int. J. Mod. Phys. A 12, 1405 (1997)CrossRefzbMATHADSGoogle Scholar
  6. 6.
    Cattaneo A.S., Felder G.: Lett. Math. Phys 56, 163 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Park, J.S.: Topological open P-Branes. In: Symplectic Geometry and Mirror Symmetry, (Seoul 2000). Singapore. World scientific, 2001, pp. 311–384Google Scholar
  8. 8.
    Severa P.: Travaux Math. 16, 121–137 (2005)MathSciNetGoogle Scholar
  9. 9.
    Ikeda N.: JHEP 0107, 037 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Ikeda N., Izawa I.K.: Prog. Theor. Phys. 90, 237 (1993)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ikeda N.: Ann. Phys. 235, 435 (1994) (For reviews)zbMATHGoogle Scholar
  12. 12.
    Schaller P., Strobl T.: Mod. Phys. Lett. A 9, 3129 (1994)CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    Ikeda, N.: Deformation of Batalin-Vilkovsky Structures. http://arxiv.org/abs/math/0604157v2 [math.SG], 2006
  14. 14.
    Kontsevich M.: Lett. Math. Phys. 66, 157 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  15. 15.
    Cattaneo A.S., Felder G.: Commun. Math. Phys. 212, 591 (2000)CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    Courant T.: Trans. A. M. S 319, 631 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, Z.J., Weinstein, A., Xu, P.: Dirac structures and Poisson homogeneous spaces. http://arxiv.org/abs/dg-ga/9611001v1, 1996
  18. 18.
    Roytenberg D.: Quasi-Lie bialgebroids and Twisted Poisson manifolds. Lett. Math. Phys. 61, 123–137 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Contemp. Math. Vol. 315, Providence, RI: Amer. Math. Soc., 2002Google Scholar
  20. 20.
    Ikeda N.: Int. J. Mod. Phys. A 18, 2689 (2003)CrossRefzbMATHADSGoogle Scholar
  21. 21.
    Ikeda N.: JHEP 0210, 076 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Hofman, C., Park, J.S.: Topological Open Membranes. http://arxiv.org/abs/[hep-th/0209148]v1, 2002
  23. 23.
    Roytenberg D.: Lett. Math. Phys. 79, 143 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. 24.
    Grützmann M.: H-twisted Lie algebroids. J. Geom. Phys. 61, 476–484 (2011)CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    Khudaverdian H.O.M.: Commun. Math. Phys. 247, 353 (2004)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    Kosmann-Schwarzbach Y.: Lett. Math. Phys. 69, 61 (2004)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    Hagiwara Y.: J. Phys. A: Math. Gen. 35, 1263 (2002)CrossRefzbMATHADSMathSciNetGoogle Scholar
  28. 28.
    Sheng, Y.: On higher-order Courant Brackets. http://arxiv.org/abs/1003.1350v1 [math.DG], 2010
  29. 29.
    Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Series 124, Cambridge: Cambridge U. Press, 1987Google Scholar
  30. 30.
    Lyakhovich S.L., Sharapov A.A.: Nucl. Phys. B 703, 419 (2004)CrossRefzbMATHADSMathSciNetGoogle Scholar
  31. 31.
    Bonelli G., Zabzine M.: JHEP 0509, 015 (2005)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Roytenberg, D.: Courantalgebroids, derived brackets and even symplectic supermanifolds, http://arxiv.org/abs/math.DG/9910078

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Maskawa Institute for Science and CultureKyoto Sangyo UniversityKyotoJapan
  2. 2.Department of MathematicsTokyo University of ScienceTokyoJapan

Personalised recommendations